Top Banner
Renesas Electronics America Inc. © 2012 Renesas Electronics America Inc. All rights reserved. Sensorless Vector Control and Implementation: Why and How
57

Renesas Sensorless Vector Control (Pag 13)

Dec 07, 2015

Download

Documents

rusuraduionel22

PMSM control
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Renesas Sensorless Vector Control (Pag 13)

Renesas Electronics America Inc.© 2012 Renesas Electronics America Inc. All rights reserved.

Sensorless Vector Control and Implementation: Why and How

Page 2: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.2

Renesas Technology & Solution Portfolio

Page 3: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.3

Microcontroller and Microprocessor Line-up

Wide Format LCDs Industrial & Automotive, 130nm 350µA/MHz, 1µA standby

44 DMIPS, True Low Power

Embedded Security, ASSP

165 DMIPS, FPU, DSC

1200 DMIPS, Performance1200 DMIPS, Superscalar

500 DMIPS, Low Power

165 DMIPS, FPU, DSC

25 DMIPS, Low Power

10 DMIPS, Capacitive Touch

Industrial & Automotive, 150nm 190µA/MHz, 0.3µA standby

Industrial, 90nm 242µA/MHz, 0.2µA standby

Automotive & Industrial, 90nm 600µA/MHz, 1.5µA standby

Automotive & Industrial, 65nm 600µA/MHz, 1.5µA standby Automotive, 40nm

500µA/MHz, 35µA deep standby

Industrial, 40nm 242µA/MHz, 0.2µA standby

Industrial, 90nm 1mA/MHz, 100µA standby

Industrial & Automotive, 130nm 144µA/MHz, 0.2µA standby

2010 2013

32

-bit

8/16

-bit

Page 4: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.4

Challenge: Sensorless vector control increases the energy efficiency of motor control systems that drive the smart society. However, understanding and implementing sensorless vector control is a herculean task.

Solution:This class will help you understand key challenges associated with sensorless vector control and how to implement it using Renesas microcontrollers

‘Enabling The Smart Society’

MCU

Page 5: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.5

Agenda

Need for vector control

Theory behind vector control

Challenges in implementing sensorless vector control

RX62T MCU family for sensorless vector control

Renesas motor control solutions

Page 6: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.6

Macro Factors Driving Need for Energy Efficiency

Global Environmental Concerns

Energy Efficiency Policies

New Initiatives

Page 7: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.7

Realizing Energy Efficiency in Motor Control

Industrial 44% Residential 26% Others 30%

Energy Efficient Motors

Electronic Control

Variable speed drives

Vector control

Direct torque control

Power factor correction

Motor Design

Motor Type

Up to ~30% savings

15% 20%

Motors (45%)

Page 8: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.8

Sensorless Vector Control Theory

Page 9: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.9

Permanent Magnet AC Motor

Complex Control Sinusoidal stator current produces rotating field Rotor mounted magnetic field is rotating

Maintain stator field orthogonal to rotor field

rsk λλ ×=Γ .

X

A

A’

XB

B’C’

XC

A B C

θ

Page 10: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.10

Vector Control Challenge

Maintain orthogonality Error correction feedback loop

– In-phase current = 0– Orthogonal current set per torque requirements

What parameters to adjust Voltage magnitude (PWM duty cycle)

Need to transform current vectors to rotor frame

Rotor Field

Stator Field

900

ωr

Page 11: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.11

Reference Frame Transformation

Vector control advantages Maximizing torque (efficiency) Independent control of flux and torque Snappy torque control for load variation

Mapping

qi

di

2-phase Rotor FrameThree-phase Statorui

wi

vi

0120

Page 12: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.12

Current Transformation to 2-ph Rotor Frame

Step 1 : 3-ph to 2-ph conversion

−−=

c

b

a

iii

ii

23

230

21

211

β

α

=

β

α

ii

II

q

d

cosθsinθsinθcosθ

ui

wi vi

F

Clarke Transformation

ω

uvwstationary frame

αi

βi

αβstationary frame

dIqI

Fq-axis

d-axis

Park Transformation

ω

dqrotatory frame

Step 2 : 2-ph stationary frame to 2-ph rotor frame (rotating) Rotor position (θ) needed

Page 13: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.13

Sensorless Vector Control

Lower cost but more complex implementation Current and motor parameters to estimate rotor position Increased reliability Reduced cost of sensor ($3-$20) Less physical space needed

Need to estimate θ without sensors

Speed /position sensor

Speed Calculation

Motor

PWM Generation

PIController

PIController

ω*

ω

i* i

θ

Position Estimation

i

Page 14: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.14

dtdiRv s

ααα

λ+= αα θλ Lirm +Λ= cos

ββ θλ Lirm +Λ= sin

ααλθ Lirm −=Λ cos ββλθ Lirm −=Λ sin

is the rotor flux linkedmΛ

is the rotor positionrθ

Flux LinkageVoltage Equation

=0=0

Motor Model in αβ Frame

dtd

iRv sβ

ββ

λ+=

Potential Inaccuracy: If full load or large motor

Page 15: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.15

Rotor Position and Speed Estimation

αλθ =Λ rm cos βλθ =Λ rm sin

)arctan(α

β

λλ

θ =r

dtdθω =

Bottleneck: arctan implementation takes several CPU cycles

Page 16: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.16

Renesas Flux Observer Model

dtiRv s

t

)(0

0 αααα λλ −+= ∫

dtd

iRv sβα

βαβα

λ ,,, +=

αePotential inaccuracy: Noise in measuring current and voltage

Potential inaccuracy: Effect of temperature on resistance

Page 17: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.17

βα ,e

nnn d+∗= − )1(,)(, 10241023

βαβα λλ1−−= nnn yyd

Low pass filteryn

Derivativedn

dtd

Low pass filter

βα ,110241023 eyy nn +∗= −

)(, nβαλ

Cascaded low pass filters rather than direct integration First low pass filter Derivative Second low pass filter

Negate the effect of DC offset in measured current/voltage

Flux Observer Implementation

Page 18: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.18

Sensorless Vector Control Loop

abctoαβ

ia

ib

dqToαβ

αβto

abc

Speed Estimation

θ

ωr

ω*r

id Regulatorid*=0

idiq

iqRegulatorSpeed

Regulator

Iq*

3-phInverter

6Sine PWM

DC BUS

αβtodq

θ

Flux and Position Observer

ClarkePark

Park-1 Clarke-1

Page 19: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.19

Implementation Challenges

Page 20: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.20

High performance CPU, FPU

Implementation Challenges

1. Computation intensive routines

12Bit Simultaneous Sampling ADC2. Multiple current/voltage measurement

Noise immunity, PWM shut off3. Robust performance

On-chip analog, data flash, dual motor4. Cost effective design

Requirements MCU Considerations

Page 21: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.21

1. Computation Intensive

High-performance RX600 Core 100MHz CPU 1-cycle flash access 32x32 H/W multiplier 32/32 H/W divider 32bit Barrel Shifter Floating point unit

• Clarke/Park Transformations• Flux Estimation• Rotor position and speed

Page 22: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.22

Floating Point Unit Advantages

PerformanceWide range and high resolution No scaling, overflow or saturation Reduced code size

Ease of Use Ease of coding, reading, debugging Compatible with the C/Matlab simulation code

Page 23: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.23

Floating Point : Range and Resolution

-210

-103+210

+103

Range

Resolution 2-21

10-7

..0..

Fixed Point Q11.21Single Precision Floating Point

..0..

-1038 +1038Range

Resolution 10-39

∫ or ∑

Page 24: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.24

Fixed-point Calculations Requires Scaling

X(n) = X(n-1) + A1 * E(n)(16b, Q12.4) (16b, Q8.8)(32b,Q14.18)

(32b,Q20.12)

(32b,Q14.18)

MULT

SHIFT

(32b,Q14.18)

Page 25: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.25

No Scaling Needed

FPU ImplementationFixed-Point Implementation

SHIFT

Page 26: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.26

No Saturation Check

Fixed-Point Implementation

Check for Saturation

Page 27: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.27

Reduced Code Size

FPU ImplementationFixed-Point Implementation

FPU instructions make code and the execution time smaller

Page 28: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.28

Readability

Fixed-Point Implementation FPU Implementation

Parameters Parameters

Park Transformation Code Park Transformation Code

Page 29: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.29

FPU Brings Ease of Simulation

•Portable to FPU•Bidirectional

•Time-consuming•Unidirectional

Simulation Platform

Inherently floating point

Floating Point Algorithm

Fixed Point CPU

Fixed Point Algorithm

Floating Point CPU

Page 30: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.30

FPU Implementations

No Load/Store Instructions

Renesas RX FPU

Floating-Point Unit

Dedicated Data Registers

General Registers

Traditional FPU

Load/Store

General Registers

Floating-Point Unit

Page 31: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.31

2. Accurate Analog Signal Measurement

Simultaneous sampling ADC Oversampling current waveform Filtering to mitigate noise Dual registers for 1-shunt

U

V

W

50us

5us

4 ADC Samples

• Estimates based on current and voltage• Integration for flux estimation• Multiple simultaneous measurements

Page 32: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.32

Current Measurement Techniques

3-shunt

U

V

W

IW IW+IV

1-Shunt Advantages Cost reduction (Res, PGA) No need for 3-ph calibration Reliability

1-shunt Challenges ADC samples twice quickly Reconstruction of current

1-shunt

IW,V,U

Page 33: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.33

Support for 3-shunt and 1-shunt Detection

AN0

AN1

AN2

Multip

lexe

r

ADC Set 1

A/D

Register 2

Register CH1

Register CH2

Register CH3

ch0

PGA S/H

S/H

S/HS/H

External Reference

3 S/H for 3 shunt current detection

AN03/CVref L

Register 1

Double register for 1-shunt

12-bit ADCs with 1us conversion time Double register for 2 samples 3S/H for one-shot sampling of three phase currents Self-diagnostic capability for UL/IEC safety requirements

PGA

PGA

Window Comparators

CPU Interrupt

PWM Shut off (POE)

Page 34: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.34

3. Robust Performance

Noise immune MCU design Careful power/ground layout Pin noise filtering 5V option

On-chip hardware POE circuit Fast window comparators

• Susceptibility to noise• Hardware shut off

Page 35: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.35

4. Cost Effectiveness

Complete solution for driving two 3-ph motors 6 programmable gain amplifiers 6 window comparators 2 x 3ph cPWM timers 2 x quadrature encoder inputs Data flash

Scalability RX6xT – package, ROM RX200 - performance

• On-chip integration• Scalability

48-144 pins

32-512KB

63TL

62T

63TH

Scalability

Page 36: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.36

Implementing Sensorless Vector Control Using RX62T

Page 37: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.37

RX62T Motor Timer Set (MTU3)

100MHz, 16bit Timers

Protection Features PWM shut down (Ext, Comparator,

Clock) Mode registers inaccessible during

operation

ch0

ch1

ch2

ch3

ch4

ch5

MTU3

3-phase cPWM O/PU,V,W

ch6

ch7

3 Input Captures

3-phase cPWM O/PU,V,W

Quadrature Encoder1A,B,Z

Quadrature Encoder2A,B,Z

Page 38: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.38

Hardware Implementation

Motor Current

6PWM Generation

PWM Shut Off

PGAS/H

12-bit ADC

Analog Unit 0

RX62T

RX600CORE

x3Comparator 3

3-phase inverter

Gate Driver

MTU CH3/4

3

3-phase BLDC Motor

Page 39: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.39

Software Implementation

Initialization

PWM Interrupt

Current Reconstruction

Speed PILast ω & Reference ω

V(u,v,w) -> PWM Duty

New θ Estimation

New Speed Estimation

Current PI

Voltage (d,q)

VBUS/Current Measurement

(u,v,w) -> (α,β) ->(d,q)

Last θ

Reference Current

Actual Current

(d,q) -> (α,β) (u,v,w) <-

Last θ

Page 40: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.40

Fixed point vs. FPU Comparison

Algorithm: Sensor less Vector Control with 1-Shunt Current Detection PWM Carrier Frequency: 20kHz Current Loop: 10kHz

RenesasInverter Board

RX62T Starter Kit

Page 41: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.41

CPU Bandwidth Usage

0% 5% 10% 15% 20% 25% 30% 35% 40%

Sine,Cosine,Atan Functions

Look-up Table

Floating PointFixed point

CPU BW

Page 42: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.42

CPU Bandwidth Usage

0 10 20 30 40

PI Loop

Clarke and Park

Position Estimation

Current Measurement

Overall

Floating PointFixed point

us

Floating-point code 40% faster

Page 43: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.43

Code Size

0 50 100 150 200 250

PI Loop

Clarke and Park

Position Estimation

Current Measurement

Floating PointFixed point

Floating-point code size is 45% lower

B

Page 44: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.44

Driving Two 3-Phase BLDC Motors

RX600 Motor Kit External Inverter

www.renesas.com/rxmotorkit

Motor #2 Motor #1

Sensorless Vector Control Floating point math CPU BW used <50%

Page 45: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.45

Implementation for Two Motor Control

Control Loop 1

Control Loop 2

CPU Available

MTU.CH3/410KHz

MTU.CH6/710KHz

Software Implementation Control loop executed at Timer underflow interrupt Both interrupts at same priority level

Alternate Implementations Control loops at different rates Interrupt at overflow/underflow

MTU.CH3/410KHz

MTU.CH6/720KHz

Control Loop 2

Control Loop 1

Page 46: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.46

Software Implementation

Initialization

PWM Interrupt

Current Reconstruction

Speed PILast ω & Reference ω

V(u,v,w) -> PWM Duty

New θ Estimation

New Speed Estimation

Current PI

Voltage (d,q)

VBUS/Current Measurement

(u,v,w) -> (α,β) ->(d,q)

Last θ

Reference Current

Actual Current

(d,q) -> (α,β) (u,v,w) <-

Last θ

PWM Interrupt2

Page 47: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.47

Performance Comparison with a High-end DSP

RX62T offers tremendous value Comparable performance Significantly lower cost

Loop execution

Code size

System Cost

High-end DSPRX62T

16us18us

+50%

7.8KB

7.4KB

Page 48: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.48

Response to Step Change in Load

950

960

970

980

990

1000

1010

1020

1030

1040

1050

0.265 6.343 22.906

Spee

d (r

pm)

time

High-end DSP

RX62T

Page 49: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.49

Renesas Motor Control Solutions

Page 50: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.50

Motor Control MCUs

RX600 Family-Dual motor vector control-Floating point-RX600 Motor Kit

RX62T100MHz, 165DMIPs64KB – 256KB

RX22032MHz,50DMIPs32KB-256KB

RX200 Family-Single motor vector control-Entry level RX core

Timeline

Performance

RL78/G1432MHz, 44DMIPs

32KB – 256KB

RL78/G14-Scalar control (low-end vector control)-RL78 Motor Kit

RX Core

RX63TL100MHz, 165DMIPs32KB – 64KB

RX63TH100MHz, 165DMIPs

256KB – 512KB

R8C/3xM20MHz

8KB – 128KBOct.2012

Page 51: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.51

Evaluation Kits for Vector Control

Extensive Code Support Flexibility to Evaluate and Develop

GUI External Inverter Connector

RX600 Motor Kit RL78 Motor Kit

Page 52: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.52

High Voltage Demo Platform (2KW)

IGBTsRJH60D5DPQ-A0

Interleaved PFC

AC to DC rectifier

Line AC 85-265V

CPU Board

Gat

e D

rive

r

PWM

Hall and EncoderCurrent Sense

In-circuit Scope

LCD

Potentiometer and Push Buttons

Set RPMRPMIsIqVdc

Page 53: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.53

2KW Inverter Platform

Page 54: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.54

Summary

Sensorless vector control improves the motor system efficiency

Implementing sensorless vector control requires careful selection of MCU

Renesas provides several motor control MCUs depending on the application requirements

RX600 and RL78 motor control kits are available for an easy evaluation of Renesas solutions

High voltage platforms are also available

Page 55: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.55

Questions?

Page 56: Renesas Sensorless Vector Control (Pag 13)

© 2012 Renesas Electronics America Inc. All rights reserved.56

Challenge: Sensorless vector control increases the energy efficiency of motor control systems that drive the smart society. However, understanding and implementing sensorless vector control is a herculean task

We discussed key challenges associated with sensorlessvector control and how to implement it using Renesas microcontrollers

Do you agree that we accomplished the above statement?

‘Enabling The Smart Society’

MCU

Page 57: Renesas Sensorless Vector Control (Pag 13)

Renesas Electronics America Inc.© 2012 Renesas Electronics America Inc. All rights reserved.