Top Banner

Click here to load reader

Queueing Doc

Nov 22, 2014

ReportDownload

Documents

bogiraja

Queueing TheoryIvo Adan and Jacques Resing Department of Mathematics and Computing Science Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands February 28, 2002

Contents1 Introduction 1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Basic concepts from probability theory 2.1 Random variable . . . . . . . . . . . . 2.2 Generating function . . . . . . . . . . . 2.3 Laplace-Stieltjes transform . . . . . . . 2.4 Useful probability distributions . . . . 2.4.1 Geometric distribution . . . . . 2.4.2 Poisson distribution . . . . . . . 2.4.3 Exponential distribution . . . . 2.4.4 Erlang distribution . . . . . . . 2.4.5 Hyperexponential distribution . 2.4.6 Phase-type distribution . . . . . 2.5 Fitting distributions . . . . . . . . . . 2.6 Poisson process . . . . . . . . . . . . . 2.7 Exercises . . . . . . . . . . . . . . . . . 7 7 11 11 11 12 12 12 13 13 14 15 16 17 18 20 23 23 25 25 26 27 28 29 29 30 31 31 32 32

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

3 Queueing models and some fundamental 3.1 Queueing models and Kendalls notation 3.2 Occupation rate . . . . . . . . . . . . . . 3.3 Performance measures . . . . . . . . . . 3.4 Littles law . . . . . . . . . . . . . . . . 3.5 PASTA property . . . . . . . . . . . . . 3.6 Exercises . . . . . . . . . . . . . . . . . . 4 M/M/1 queue 4.1 Time-dependent behaviour . . . . . . 4.2 Limiting behavior . . . . . . . . . . . 4.2.1 Direct approach . . . . . . . . 4.2.2 Recursion . . . . . . . . . . . 4.2.3 Generating function approach 4.2.4 Global balance principle . . . 3

relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

4.3 Mean performance measures . . . . . . . . . . . 4.4 Distribution of the sojourn time and the waiting 4.5 Priorities . . . . . . . . . . . . . . . . . . . . . . 4.5.1 Preemptive-resume priority . . . . . . . 4.5.2 Non-preemptive priority . . . . . . . . . 4.6 Busy period . . . . . . . . . . . . . . . . . . . . 4.6.1 Mean busy period . . . . . . . . . . . . . 4.6.2 Distribution of the busy period . . . . . 4.7 Java applet . . . . . . . . . . . . . . . . . . . . 4.8 Exercises . . . . . . . . . . . . . . . . . . . . . . 5 M/M/c queue 5.1 Equilibrium probabilities . . . . . . . . . . . . . 5.2 Mean queue length and mean waiting time . . . 5.3 Distribution of the waiting time and the sojourn 5.4 Java applet . . . . . . . . . . . . . . . . . . . . 5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . 6 M/Er /1 queue 6.1 Two alternative state descriptions 6.2 Equilibrium distribution . . . . . 6.3 Mean waiting time . . . . . . . . 6.4 Distribution of the waiting time . 6.5 Java applet . . . . . . . . . . . . 6.6 Exercises . . . . . . . . . . . . . . 7 M/G/1 queue 7.1 Which limiting distribution? . . 7.2 Departure distribution . . . . . 7.3 Distribution of the sojourn time 7.4 Distribution of the waiting time 7.5 Lindleys equation . . . . . . . . 7.6 Mean value approach . . . . . . 7.7 Residual service time . . . . . . 7.8 Variance of the waiting time . . 7.9 Distribution of the busy period 7.10 Java applet . . . . . . . . . . . 7.11 Exercises . . . . . . . . . . . . .

. . . time . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

32 33 35 36 37 37 38 38 39 40 43 43 44 46 46 47 49 49 49 52 53 54 55 59 59 60 64 66 66 68 68 70 71 73 74 79 79 83 84

. . . . . . time . . . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

8 G/M/1 queue 8.1 Arrival distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 Distribution of the sojourn time . . . . . . . . . . . . . . . . . . . . . . . . 8.3 Mean sojourn time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

8.4 Java applet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Priorities 9.1 Non-preemptive priority . . . 9.2 Preemptive-resume priority . . 9.3 Shortest processing time rst 9.4 A conservation law . . . . . . 9.5 Exercises . . . . . . . . . . . .

84 85 87 87 90 90 91 94 97 97 97 98 99 100 100 101 103 104 107 111 111 113 114 115 116 119 121 123

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

10 Variations of the M/G/1 model 10.1 Machine with setup times . . . . . . . . . . . . . . . . . . . . . . 10.1.1 Exponential processing and setup times . . . . . . . . . . . 10.1.2 General processing and setup times . . . . . . . . . . . . . 10.1.3 Threshold setup policy . . . . . . . . . . . . . . . . . . . . 10.2 Unreliable machine . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.1 Exponential processing and down times . . . . . . . . . . . 10.2.2 General processing and down times . . . . . . . . . . . . . 10.3 M/G/1 queue with an exceptional rst customer in a busy period 10.4 M/G/1 queue with group arrivals . . . . . . . . . . . . . . . . . . 10.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Insensitive systems 11.1 M/G/ queue . . 11.2 M/G/c/c queue . . 11.3 Stable recursion for 11.4 Java applet . . . . 11.5 Exercises . . . . . . Bibliography Index Solutions to Exercises

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . B(c, ) . . . . . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

5

6

Chapter 1 IntroductionIn general we do not like to wait. But reduction of the waiting time usually requires extra investments. To decide whether or not to invest, it is important to know the eect of the investment on the waiting time. So we need models and techniques to analyse such situations. In this course we treat a number of elementary queueing models. Attention is paid to methods for the analysis of these models, and also to applications of queueing models. Important application areas of queueing models are production systems, transportation and stocking systems, communication systems and information processing systems. Queueing models are particularly usef