Top Banner
Quantum Dots PA2003: Nanoscale Frontiers • Artificial atoms • Schrödinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator • Real quantum dots • Semiconductors Semiconductor nanocrystals Tipler Chapters 36,37 Quantum Dots Dr Mervyn Roy, S6
20

Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.

Dec 20, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.

Quantum Dots

PA2003: Nanoscale Frontiers

• Artificial atoms• Schrödinger equation

• Square well potential• Harmonic oscillator• 2D Harmonic oscillator

• Real quantum dots• Semiconductors

• Semiconductor nanocrystals

Tipler Chapters 36,37

Quantum Dots

Dr Mervyn Roy, S6

Page 2: Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.

Quantum Dots

PA2003: Nanoscale Frontiers

Real atom: Electrons confined by coulomb potential in 3D- discrete energy levels

Quantum dot: any nanostructure that confines electrons in 3D

- discrete energy levels- much more flexibility than in nature

Applications: molecular scale electronics, spintronics, opto-electronics, quantum cryptography, quantum computing, fluorescent bio-labels

Quantum Dots

Artificial Atoms

Page 3: Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.

Quantum Dots

PA2003: Nanoscale Frontiers

1D Standing waves

1 1

xx=0 x=L

V

Standing waves in a box

Page 4: Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.

Quantum Dots

PA2003: Nanoscale Frontiers

1D Standing waves

1 1

xx=0 x=L

V

Standing waves in a box

Page 5: Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.

Quantum Dots

PA2003: Nanoscale Frontiers

Schrödinger equation

Probability density

For stationary states

Uncertainty principleCan use to estimate energy, gives

Wave particle duality - probability waves described by the Schrödinger equation

Page 6: Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.

Quantum Dots

PA2003: Nanoscale Frontiers

1D Square well confinement

1 1

xx=0 x=L

V

Same as standing waves in a box!

Discrete energy levels, quantum number nLowest energy state not zero!

Page 7: Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.

Quantum Dots

PA2003: Nanoscale Frontiers

3D Square well confinement

a

cb

Because V(x,y,z) is separable (V=0) treat each direction separately

1 quantum number for each degree of freedom

• Squash box: energy level spacing in z very large, z motion quantised out -

effectively reduce the number of dimensions

• Stretch box: energy spacing very small - motion in y direction classical

10 % iso-surface

Page 8: Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.

Quantum Dots

PA2003: Nanoscale Frontiers

Harmonic confinement

probability distributions

Page 9: Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.

Quantum Dots

PA2003: Nanoscale Frontiers

Harmonic confinement

probability distributions

Page 10: Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.

Quantum Dots

PA2003: Nanoscale Frontiers

Harmonic confinement

Correspondence principle

Classical behaviour at high energywhen n is large

Shell fillingSpin up / down

1D quantum dot analogues of H, He etc.

Page 11: Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.

Quantum Dots

PA2003: Nanoscale Frontiers

2D Harmonic confinement

Solve Schrödinger equation in 2D

State Energy quantum no’s spin no. e- total no.

ground n=0, l=0 2 2

1st n=0, l=§1 4 6

2nd n=1,l=0 or n=0,l=§2 6 12

Page 12: Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.

Quantum Dots

PA2003: Nanoscale Frontiers

Nanotube quantum dot

source drainnanotube

SiO2dot

270 nm

gate 0.5 nm

• Nanotubes are already used in flak jackets, fuel pipes, tennis rackets etc.

• Molecular scale single electron transistor

2 electronchargedensity(Helium)

electrostatic confinement

potential

2 electrons per shell (spin up, spin down)

Page 13: Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.

Quantum Dots

PA2003: Nanoscale Frontiers

Pillar dot

(20, 5/2)

vertical confinement ~ square welllateral confinement ~ 2D harmonic oscillator

Electron molecule (pair correlation function)Rotating pentagonal electron molecule (Boron)

Calculation by Prof. P. A. Maksym

Page 14: Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.

Quantum Dots

PA2003: Nanoscale Frontiers

Self assembled quantum dot

MBE grown dots. ~ 3D quantum box

Dots are highly strained

-0.10.0

5 n

m

InAs dot

GaAs

Isosurfaces in electron charge density

Page 15: Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.

Quantum Dots

PA2003: Nanoscale Frontiers

Semiconductor bands

Eg

SemiconductorsElectrons: Holes:

Free particles:

Dispersion relations

Hole (absence of electron): +ve charged particle with effective mass

holes and electrons recombine near k=0 to produce a photon

Page 16: Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.

Quantum Dots

PA2003: Nanoscale Frontiers

Semiconductor nanocrystals

Bulk semiconductors – photon depends on:• band gap Eg

Nanocrystals - photon depends on:• band gap Eg • nanocrystal size

small large

Page 17: Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.

Quantum Dots

PA2003: Nanoscale Frontiers

Eg

Ee

Eh

Semiconductor nanocrystals

1 1

xx=0 x=L

V

~ 1D box,

Eg

Normal semiconductor

Semiconductor nanocrystals

Page 18: Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.

Quantum Dots

PA2003: Nanoscale Frontiers

Semiconductor nanocrystals

Complications: 3D not 1D… R

Ee

Eh

makes no difference:

Complications: Electrons and holes present…

Page 19: Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.

Quantum Dots

PA2003: Nanoscale Frontiers

Semiconductor nanocrystals

Complications 3D not 1D… R

Complications: Electrons and holes present…

Ee

Eh

makes no difference:

Coulomb interaction

Complications: surface effects, correlation effects etc. etc.

R

Page 20: Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.

Quantum Dots

PA2003: Nanoscale Frontiers

Semiconductor nanocrystals

Gao et al. Nature Biotechnology, 22, (8), 969 (2004)