Top Banner
Simple Harmonic Oscillator Classical harmonic oscillator Linear force acting on a particle (Hooke’s law): F = ! kx F = ma = m d 2 x dt 2 = ! kx " d 2 x dt 2 + # 2 x = 0, # = k / m x (t ) = x (0)cos( ! t ) + p(0) m ! sin( ! t ) p(t ) = m dx dt = p(0)cos ! t ( ) " m ! x (0)sin( ! t ) From Newton’s law: Position and momentum solutions oscillate in time:
16

Simple Harmonic OscillatorSimple Harmonic Oscillator Quantum harmonic oscillator Eigenvalues and eigenfunctions The energy eigenfunctions and eigenvalues can be found by analytically

Feb 04, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Simple Harmonic OscillatorClassical harmonic oscillator

    Linear force acting on a particle (Hooke’s law):

    F = !kx

    F = ma = md2x

    dt2= !kx

    "d2x

    dt2+#

    2x = 0, # = k / m

    x(t) = x(0)cos(!t) +p(0)

    m!sin(!t)

    p(t) = mdx

    dt= p(0)cos !t( ) " m!x(0)sin(!t)

    From Newton’s law:

    Position and momentum solutions oscillate in time:

  • Simple Harmonic OscillatorClassical harmonic oscillator

    Classical Hamiltonian

    H = T +V

    T =p2

    2m

    F = !"V

    "x#V =

    1

    2kx

    2=1

    2m$

    2x2

    V(x)

    x

    H =p2

    2m+1

    2m!

    2x2

  • Simple Harmonic OscillatorQuantum harmonic oscillator

    Quantum Hamiltonian: replace x and p variables with operators

    H = T +V =p2

    2m+1

    2m!

    2x2

    Define a dimensionless operator

    a =m!

    2!x + i

    1

    2m!!p

    Then

    a†=

    m!2!

    x + i1

    2m!!p

    "

    #$%

    &'

    =m!2!

    x ( i1

    2m!!p

    Position, momentum operators obey the canonical commutation relation:

    [x, p] = i!

  • Simple Harmonic OscillatorQuantum harmonic oscillator

    Commutation relation:

    a,a†!" #$ =

    m%2!

    x + i1

    2m%!p

    &

    '()

    *+,

    m%2!

    x , i1

    2m%!p

    &

    '()

    *+!

    "--

    #

    $..

    =m%2![x, x]+

    i

    2![p, x],

    i

    2![x, p]+

    1

    2m%![p, p]

    =i

    2!(,i!) ,

    i

    2!(i!) = 1

    a,a†!" #$ = 1

    a†,a!" #$ = %1

  • Simple Harmonic OscillatorQuantum harmonic oscillator

    Number operator:

    Hence we can rewrite the Hamiltonian in terms of the number operator:

    N = a†a =

    m!2!

    x "i1

    2m!!p

    #

    $%&

    '(m!2!

    x + i1

    2m!!p

    #

    $%&

    '(

    =1

    !!p2

    2m+1

    2m! 2x2

    #$%

    &'("1

    2

    N = a†a =

    m!2!

    x " i1

    2m!!p

    #

    $%&

    '(m!2!

    x + i1

    2m!!p

    #

    $%&

    '(

    H =p2

    2m+1

    2m! 2x2 = !! a†a +

    1

    2

    #$%

    &'(

  • Simple Harmonic OscillatorQuantum harmonic oscillatorNumber operator:

    [N ,H ] = a†a,H!" #$ = !% a

    †a, a

    †a +

    1

    2

    &'(

    )*+

    !

    ",

    #

    $- = 0

    [N ,a] = a†a,a!" #$ = a

    †a,a[ ] + a†,a!" #$a = %a

    [N ,a†] = a

    †a,a

    †!" #$ = a†a,a

    †!" #$ + a†,a

    †!" #$a = a†

    N†= a

    †a( )

    = a†a†( )†

    = a†a = N

    Commutation relations

    [H ,a] = !! N +1 2,a[ ] = !! N ,a[ ] = "!!a

    [H ,a†] = !! N +1 2,a†#$ %& = !! N ,a

    †#$ %& = !!a†

  • Simple Harmonic OscillatorQuantum harmonic oscillator

    Eigenvalues and eigenfunctionsThe energy eigenfunctions and eigenvalues can be found by analyticallysolving the TISE. Here we will use operator algebra:

    Energy eigenvalue equation (TISE):

    H =p2

    2m+1

    2m! 2x2 = !! N +

    1

    2

    "#$

    %&'= !! a†a +

    1

    2

    "#$

    %&'

    H !n= E

    n!n

    Ha !n= aH " !#a( ) !

    n= E

    n" !#( )a !n

    Ha† !

    n= a

    †H + !#a†( ) !n = En + !#( )a

    † !n

    Notice that:

    The parentheses around ψ are standard (Dirac) notation for states that isindependent of x or p representation. More on this notation later.

  • Simple Harmonic OscillatorQuantum harmonic oscillator

    Eigenvalues and eigenfunctions

    The state is an energy eigenfunction with eigenvalue

    The state is an energy eigenfunction with eigenvalue

    H !n= E

    n!n

    Ha !n= E

    n" !#( )a !n

    Ha† !

    n= E

    n+ !#( )a† !n

    Hence a and a+ are called the raising and lowering (ladder) operatorssince they raise or lower the energy by a definite amount.

    a !n

    a† !

    n

    En! !"( )

    En+ !!( )

  • Simple Harmonic OscillatorQuantum harmonic oscillator

    Eigenvalues and eigenfunctions

    Consider the lowest eigenvalue of H (ground state energy):

    H !n= E

    n!n

    H !0= E

    0!0

    The lowering operator a cannot lower the energy of this eigenstate anyfurther. Hence,

    a !0= 0

    !!a†( )a "0 = !!N "0 = H #!!2

    $%&

    '()"0= E

    0#!!2

    $%&

    '()"0= 0

    E0=!!

    2

    Ground state energy:

  • Simple Harmonic OscillatorQuantum harmonic oscillator

    Eigenvalues and eigenfunctions

    H !n= E

    n!n

    H !0= E

    0!0

    We have seen that the states

    are energy eigenstates with energy .

    Thus starting with the lowest energy E0, the energy eigenvalues are

    E0,E

    0+ !! ,E

    0+ 2!! ,......

    En= E

    0+ n!! = n +

    1

    2

    "#$

    %&'!!

    E0=!!

    2

    a† !

    n

    En+ !!( )

  • Simple Harmonic OscillatorQuantum harmonic oscillator

    Eigenvalues and eigenfunctions

    A unique feature of the quantum harmonic oscillator is that the energyeigenvalues are equally spaced:

    En= n +

    1

    2

    !"#

    $%&!'

  • Simple Harmonic OscillatorQuantum harmonic oscillator

    !0(x) = N

    0e" x2 x

    c

    2

    N0

    2=

    m#

    $!, x

    c=

    2!

    m#

    Consider the ground state:

    !m"

    2!#0+!

    2m"

    $#0

    $x= 0

    Normalized solution:

    The lowering operator a cannot lower the energy of this eigenstate anyfurther. Hence,

    a !0= 0

  • Simple Harmonic OscillatorQuantum harmonic oscillator

    !0(x) = N

    0e" x2 x

    c

    2

    N0

    2=

    m#

    $!, x

    c=

    2!

    m#

    Now we can calculate the higher energy (excited) states:

    !1(x) = N

    1a†!0(x) = N

    1

    x

    xc

    "xc

    2

    ##x

    $

    %&'

    ()!0(x)

    !2(x) = N

    2a†( )2

    !0(x) = N

    2

    x

    xc

    "xc

    2

    ##x

    $

    %&'

    ()

    2

    !0(x)

    !n(x) = N

    na†( )

    n

    !0(x) = N

    n

    x

    xc

    "xc

    2

    ##x

    $

    %&'

    ()

    n

    !0(x)

  • Simple Harmonic OscillatorQuantum harmonic oscillator

    !0(x) = N

    0e" x2 x

    c

    2

    N0

    2=

    m#

    $!, x

    c=

    2!

    m#

    Now we can calculate the higher energy (excited) states:

    !n(x) =

    1

    2nn!H

    ny( )!0 (x)

    Normalized solutions:

    Hn(y): Hermite polynomials

    y =2x

    xc

  • Simple Harmonic OscillatorFirst few Hermite polynomials:

    H0(x) = 1, H

    1(x) = x, H

    2(x) = 4x

    2! 2

    There are many properties known about Hermite polynomials.See http://mathworld.wolfram.com/HermitePolynomial.html or yourfavourite mathematics book of special functions for more.

  • Simple Harmonic OscillatorQuantum harmonic oscillator

    Ground State Expectation values (verify this using the ladderoperators, a and a+. See Example 2.5 in the textbook)

    !p0= p

    2

    0" p

    2

    =m#!

    2

    !x0= x

    2

    0" x

    2

    =!

    2m#

    !x0!p

    0=!

    2

    The ground state is a minimum uncertainty state.Recall that such a state must be Gaussian.