Top Banner
Quantum Communication & Computation Using Spin Chains Quantum Computation Part: S. C. Benjamin & S. Bose, quant-ph/0210157 (to appear in PRL) Quantum Communication Part: S. Bose, quant-ph/0212041 Sougato Bose Institute for Quantum Information, Caltech & UCL, London
24

Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

May 12, 2018

Download

Documents

buianh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

Quantum Communication & Computation Using Spin Chains

Quantum Computation Part: S. C. Benjamin & S. Bose, quant-ph/0210157 (to appear in PRL)

Quantum Communication Part:S. Bose, quant-ph/0212041

Sougato BoseInstitute for Quantum Information, Caltech

& UCL, London

Page 2: Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

1D Bulk Magnets are Natural Spin Chains (Examples):

Cu (spin

½ sites)

Isotropic Heisenberg Antiferromagnet:

P. R. Hammar et. al., PRB 59, 1008 (1999).

Page 3: Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

Quantum computation using a 1D magnet

Quantum computationby applying a time varyingand inhomogeneous magneticfield to a spin chain.

Page 4: Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

Heisenberg Chain to Ising Chain Conversion:

Heisenberg

Ising

A, B = Zeeman Energies,|A-B| >> J

If

Where,

ThenImplies

Page 5: Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

Positions of Qubits & Barrier Spins

A barrier spin A qubit

Case A: When Universal Local Gates Are Possible:

The Ising interaction on each qubit is then completely cancelled atall times. Note: Both barrier spins could be in the same state (whichis easier to initialize, with periodic cancellation of Ising effects.

iε are variable energies, set to B in the passive statewhen single qubit gates are performed.

Page 6: Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

Case A: When Universal Local Gates Are Possible:

)(t1 2 3 4 5

Bt =)(εJAt +=)(ε

For a Gate between X & Y,

is changed (fast) to

Then 3 becomes resonant with 2 & 4 (2,3,4 becomea small Heisenberg chain).

Page 7: Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

Case A (Contd.)

At time

1 2 3 4 5

2 & 4 disentangle from 3.

An entangling gate between X and Y !

Use techniques of: M. J. Bremner et. al., quant-ph/0207072.J. L. Dodd et. al., PRA 65, 040301 (2002).

Page 8: Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

Case B: When Only Zeeman Energy Tuning is Possible Locally:

Method for one qubit gates:

Page 9: Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

Method for two qubit gatesCase B: When Only Zeeman Energy Tuning is Possible Locally:

Page 10: Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

Global control quantum computation schemes of Lloyd & BenjaminS. Lloyd, Science 261, 1569 (1993); S. C. Benjamin, PRL 88, 017904 (2002).

One Qubit Gates Two Qubit Gates

Page 11: Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

Case B: When No Local Ability is Present:

Control Switch of Six Settings

Control Through the Strength of a Single Field

Page 12: Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

Alice Bob

BobAlice

Quantum Communication through a Spin Chain

Avoids interfacing solid state systems with optics for the purpose of short-distance communication:

Quantum Computer

Quantum Computer

Page 13: Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

Definition of Spin-Chains:

(B) “Always On” (untunable) interactions

(A) 1D array of spins

Makes it much easier to fabricate such systems withqubit arrays (especially in solid state) than to perform arbitrary quantum computations.

Page 14: Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

s

r

H Jiji j

i j=< >∑

,

.σ σ

First consider arbitrary graphs with ferromaneticHeisenberg interactions

Initialized in the ground state0 = ≡| ... ,000 00 0

12

N

with H BB j zj

= − ∑σ ,

Page 15: Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

s

r1

2

N

At t = 0,

Ψ ( ) | .. (cos sin ) ..0 00 02

02

1 00 0= +θ θφei

1,2,..,s-1 s s+1,…,N

1 ≡

Page 16: Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

Time evolution of the spin-graph:

Ψ ( ) cos sin ( ),t e e f ti iBtj sN

j

N

= + −

=∑θ θφ

2 22

1

0 j

where, 0 = 00 0... j = 00 010 0.. ..,

j th spinf t ej s

N iHt, ( ) = −j sand

is the transition amplitude of an excitation from the s thto the j th spin due to H.

Note that only the ground & N one-excitation states of the graph are invloved (because H does not createexcitations, only propagates excitations).

Page 17: Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

s

r12

N

ρ ψ ψr r r( ) ( ) ( ) ( ) ( ( ))t P t t t P tout out= + −1 0 0

P t f tN( ) cos | ( )| sin= +2 2 2

2 2θ θ

r,s

ψθ θφ

outi iBt Nt

P te e f t( )

( )(cos sin ( ) )= +

12

02

12r r,s r

where, ,

B should be chosen so that f t f tN Nr,s r,s( ) | ( )|⇒

Page 18: Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

The graph of Heisenberg interacting spins behaves as an amplitude damping quantum channel:

M f tN0

1 00=

| ( )|r,sM f tN

1

20 10 0

= −

r,s ( ),

Fidelity averaged over the Bloch Sphere:

F t f t f tin out in= = + +∫1

412

13

16

2

πψ ρ ψ( ) ( ) ( )r,s

Nr,sN

Entanglement (Concurrence) for input of one half of a Ψ ( )+

E f tC = r,sN ( )

Exceptionally simple formulae in terms of a singletransition amplitude

Page 19: Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

We will consider two cases:A linear chain with communicating parties at opposite ends(most natural and readily implementable case):

1 NAlice Bob

A closed loop with the communicating parties at diametrically opposite ends (to compare):

Alice Bob1

NN/2

HJ

j

N

j j= −=

+∑2 1

1

1σ σ.

HJ J

j

N

j j N= − −=

+∑2 21

1

1 1σ σ σ σ. .

Page 20: Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

Eigenstates in the one excitation sector:

~ cos ( )( )m aN

m jmj

N

= − −

=

∑ π2

1 2 11

j

m N= 1,..., aN1

1= a

Nm> =1

2

(A) Linear (open chain) case:

for with and

(B) Closed chain case:

~ ( )m

Ne

iN

m j

j

N

=−

=∑1 2

1

1

π

j

m N= 1,...,for

(A Quantum Cosine Trans.)

(A Quantum Fourier Trans.)

Page 21: Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

| | | ( , ( , ))|f DCT N v tmr,sN

s r=

v t am

Nem m

i JtmN( , ) cos

( )(

cos( )

r r -1)=−

π π12

22

1

| | | ( , ( ))|f DFT N v tmr,sN

r-s=

v t em

i JtmN( )

cos( )

=−

22 1π

Transition amplitudes in terms of readily computable transforms:(A) Linear (open chain) case:

where

(B) Closed chain case:

where

aN1

1= a

Nm> =1

2and

Page 22: Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

Fidelity, Entanglement

Log of Scaled time

Page 23: Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

Alternative formulas in terms of Bessel functions:

f J Jt J Jt

J Jt

NN Nk

N kk

NkN k

k

N

, ( ) ( )'( ) ( ) ( ) ( )

( )

1 10

2

10

2

2 1 2 1 2

2 2

= −

+ −

+=

+=

∑ ∑

f J Jt

J Jt

NN N k

N kk

N

/ ,( / )

( / )( )

/

( ) ( )

( )

2 12

2 2 10

2

2 1 2

2 2

= −

+=

at the maximum near 2Jt=N

at the maximum near 2Jt=N/2

Open chain:

Closed chain:

1. Closed chain 2N ≤Open chain N

2. Can find high fidelity transfer at 2Jt=NN E Jt

N E JtC

C

= ⇒ = =

= ⇒ = =

10 2 1005 013

10 2 10017 0 06

3

4

( ) .

( ) .

Distillable

Page 24: Quantum Communication & Computation Using Spin Chainsinsti.physics.sunysb.edu/conf/simons-qcomputation/talks/bose.pdf · Quantum Communication & Computation Using Spin Chains Quantum

Possible Future Work

1.Sending higher D systems (Ex: 4 state systems by using up to 2 spin excitations --- with Korepin).

Q.Comm part:

2. Study Graphs which improve comm. fidelity (suggested by Preskill)

3. Direct qubit comm. (without distillation) over arbitrary distances by using spin-1 chain (--- with Thapliyal).

4. Can measurements on the chain improve transfer? (suggested byVerstraete).

Q.Compu part:

2D extensions, extensions to clusters replacing single qubits etc.--- for greater fault tolerance and robustness.