Top Banner
. . Quadratic Stability of Dynamical Systems Raktim Bhattacharya Aerospace Engineering, Texas A&M University
30

Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

Jun 30, 2018

Download

Documents

doanquynh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

.

...... Quadratic Stability of Dynamical Systems

Raktim BhattacharyaAerospace Engineering, Texas A&M University

Page 2: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

Quadratic LyapunovFunctions

Page 3: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

. . . . . .Lyapunov Stability

. . .Optimal State Feedback

. . . . .Formulation 1 – EL

. . . .Formulation 2 – HJB

. . . . .Formulation 3

. . . . . .Formulation 4 – LMI

Quadratic StabilityDynamical system

x = Ax,

is quadratically stable if∃V (x) ≥ 0, V ≤ 0.

Let V (x) = xTPx, P ∈ Sn++ (P = P T > 0)

Therefore,V (x) = xTPx+ xTPx

= xTATPx+ xTPAx

= xT(ATP + PA

)x

ThereforeV ≤ 0 =⇒ xT

(ATP + PA

)x ≤ 0 =⇒ ATP + PA ≤ 0.

AERO 632, Instructor: Raktim Bhattacharya 3 / 30

Page 4: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

. . . . . .Lyapunov Stability

. . .Optimal State Feedback

. . . . .Formulation 1 – EL

. . . .Formulation 2 – HJB

. . . . .Formulation 3

. . . . . .Formulation 4 – LMI

Lyapunov EquationWe can write

ATP + PA ≤ 0

asATP + PA+Q = 0

for Q = QT ≥ 0.InterpretationFor linear system x = Ax, if V (x) = xTPx,

V (x) = xTPx+ xTPx

= (Ax)TPx+ xTP (Ax)

= −xTQx.

If V (x) = xTPx is generalized energy, V = −xTQx is generalizeddissipation.

AERO 632, Instructor: Raktim Bhattacharya 4 / 30

Page 5: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

. . . . . .Lyapunov Stability

. . .Optimal State Feedback

. . . . .Formulation 1 – EL

. . . .Formulation 2 – HJB

. . . . .Formulation 3

. . . . . .Formulation 4 – LMI

Stability ConditionIf P > 0, Q > 0, then x = Ax

is globally asymptotically stableRλi(A) < 0

Note that for P = P T > 0, eigenvalues are real

=⇒ λmin(P ) xTx ≤ xTPx ≤ λmax(P ) xTx

=⇒ V = −xTQx ≤ −λmin(Q)xTx

≤ − λmin(Q)

λmax(P )xTPx

= −αV (x)

AERO 632, Instructor: Raktim Bhattacharya 5 / 30

Page 6: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

. . . . . .Lyapunov Stability

. . .Optimal State Feedback

. . . . .Formulation 1 – EL

. . . .Formulation 2 – HJB

. . . . .Formulation 3

. . . . . .Formulation 4 – LMI

Lyapunov IntegralIf A is stable, then

P =

∫ ∞

0etA

TQetAdt, for any Q = QT > 0.

Proof:Substitute it in LHS of Lyapunov equation to get,

ATP + PA =

∫ ∞

0

(AT etA

TQetA + etA

TQetAA

)dt,

=

∫ ∞

0

(d

dtetA

TQetA

)dt,

= etATQetA

∣∣∣∞0,

= −Q.

AERO 632, Instructor: Raktim Bhattacharya 6 / 30

Page 7: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

. . . . . .Lyapunov Stability

. . .Optimal State Feedback

. . . . .Formulation 1 – EL

. . . .Formulation 2 – HJB

. . . . .Formulation 3

. . . . . .Formulation 4 – LMI

Computation of ∥x∥2,QRecall

∥x∥22 :=∫ ∞

0xTx dt.

Define weighted norm as

∥x∥22,Q :=

∫ ∞

0xTQx dt.

If x(t) is solution of x = Ax,x(t) := etAx0.

Substituting we get,

∥x∥22,Q =

∫ ∞

0xT0 e

tATQetAdt

= xT0 Px0 assuming A is stable

Cost-to-go interpretationAERO 632, Instructor: Raktim Bhattacharya 7 / 30

Page 8: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

LQR Problem

Page 9: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

. . . . . .Lyapunov Stability

. . .Optimal State Feedback

. . . . .Formulation 1 – EL

. . . .Formulation 2 – HJB

. . . . .Formulation 3

. . . . . .Formulation 4 – LMI

Linear Quadratic RegulatorProblem Statement

Given systemx = Ax+Bu, y = Cx+Du.

Determine u∗(t) that solvesminu(t)

∥y∥2 with x(0) = x0.

Or

minu(t)

J :=

∫ ∞

0yT y dt

=

∫ ∞

0

(xTCTCx+ xTCTDu+ uTDTCx+ uTDTDu

)dt

=

∫ ∞

0

(xTCTCx+ uTDTDu

)dt.

Assume CTD = 0 for simplicity. AERO 632, Instructor: Raktim Bhattacharya 9 / 30

Page 10: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

. . . . . .Lyapunov Stability

. . .Optimal State Feedback

. . . . .Formulation 1 – EL

. . . .Formulation 2 – HJB

. . . . .Formulation 3

. . . . . .Formulation 4 – LMI

Linear Quadratic RegulatorSolution as Optimal Control Problem

minu

∫ ∞

0

(xTQx+ uTRu

)dt, Q = QT ≥ 0, R = RT > 0

subject to

x = Ax+Bu,

x(0) = x0.

Euler Lagrange EquationsHamilton-Jacobi-Bellman Equation – Dynamic Programming

AERO 632, Instructor: Raktim Bhattacharya 10 / 30

Page 11: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

Euler LangrangeFormulation

Page 12: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

. . . . . .Lyapunov Stability

. . .Optimal State Feedback

. . . . .Formulation 1 – EL

. . . .Formulation 2 – HJB

. . . . .Formulation 3

. . . . . .Formulation 4 – LMI

Linear Quadratic RegulatorSolution as Optimal Control Problem – EL Formulation

minu

∫ T

0L(x, u)dt+Φ(x(T )), subject to x = f(x, u).

Define H = L+ λT f .

Euler-Lagrange Equations

Hu = 0 λT = −Hx λ(T ) = ϕx(x(T ))

Our Problem

minu

∫ T

0

(xTQx+ uTRu

)dt, subject to x = Ax+Bu.

Define H = xTQx+ uTRu+ λT (Ax+Bu).AERO 632, Instructor: Raktim Bhattacharya 12 / 30

Page 13: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

. . . . . .Lyapunov Stability

. . .Optimal State Feedback

. . . . .Formulation 1 – EL

. . . .Formulation 2 – HJB

. . . . .Formulation 3

. . . . . .Formulation 4 – LMI

Linear Quadratic RegulatorSolution as Optimal Control Problem – EL Formulation

Our Problem

minu

1

2

∫ T

0

(xTQx+ uTRu

)dt, subject to x = Ax+Bu.

Define H = 12

(xTQx+ uTRu

)+ λT (Ax+Bu).

EL Equations

(1) Hu = 0 =⇒ uTR+ λTB = 0 =⇒ u = −R−1BTλ.

(2) λT = −Hx = −xTQ− λTA

(3) λ(T ) = 0.

AERO 632, Instructor: Raktim Bhattacharya 13 / 30

Page 14: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

. . . . . .Lyapunov Stability

. . .Optimal State Feedback

. . . . .Formulation 1 – EL

. . . .Formulation 2 – HJB

. . . . .Formulation 3

. . . . . .Formulation 4 – LMI

Linear Quadratic RegulatorSolution as Optimal Control Problem – EL Formulation

Let λ(t) = P (t)x(t)

=⇒ λ = P x+ Px

= P x+ P (Ax+Bu),

= P x+ P (Ax−BR−1BTPx),

= (P + PA− PBR−1BTP )x.

From EL(2) we getλ = −Qx−ATPx

=⇒ (P + PA+ATP − PBR−1BTP +Q)x = 0

=⇒ P + PA+ATP − PBR−1BTP +Q = 0. Riccati Differential Equation

In the steady-state T → ∞, P = 0,PA+ATP − PBR−1BTP +Q = 0. Algebraic Riccati Equation

AERO 632, Instructor: Raktim Bhattacharya 14 / 30

Page 15: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

. . . . . .Lyapunov Stability

. . .Optimal State Feedback

. . . . .Formulation 1 – EL

. . . .Formulation 2 – HJB

. . . . .Formulation 3

. . . . . .Formulation 4 – LMI

Linear Quadratic RegulatorSolution as Optimal Control Problem – EL Formulation

minu

1

2

∫ ∞

0

(xTQx+ uTRu

)dt, subject to x = Ax+Bu.

is equivalent to

PA+ATP − PBR−1BTP +Q = 0,

u = −R−1BTP.

AERO 632, Instructor: Raktim Bhattacharya 15 / 30

Page 16: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

Hamilton-Jacobi-BellmanFormulation

Page 17: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

. . . . . .Lyapunov Stability

. . .Optimal State Feedback

. . . . .Formulation 1 – EL

. . . .Formulation 2 – HJB

. . . . .Formulation 3

. . . . . .Formulation 4 – LMI

Hamilton-Jacobi-Bellman ApproachLet

V ∗(x(t)) = minu[t,∞)

1

2

∫ ∞

t(xTQx+ uTRu)dt

subject tox = Ax+Bu.

AERO 632, Instructor: Raktim Bhattacharya 17 / 30

Page 18: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

. . . . . .Lyapunov Stability

. . .Optimal State Feedback

. . . . .Formulation 1 – EL

. . . .Formulation 2 – HJB

. . . . .Formulation 3

. . . . . .Formulation 4 – LMI

Hamilton-Jacobi-Bellman Approachcontd.

V ∗(x(t)) = minu[t,∞)

1

2

∫ ∞

t(xTQx+ uTRu)dt

= minu[t,t+∆t]

{∫ t+∆t

t

1

2(xTQx+ uTRu)dt+ V ∗(x(t+∆t))

}Let V (x) := xTPx, therefore,

V ∗(x(t)) = minu[t,t+∆t]

{1

2(xTQx+ uTRu)∆t+ V ∗(x(t))+

(Ax+Bu)TPx∆t+ xTP (Ax+Bu)∆t+H.O.T}

AERO 632, Instructor: Raktim Bhattacharya 18 / 30

Page 19: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

. . . . . .Lyapunov Stability

. . .Optimal State Feedback

. . . . .Formulation 1 – EL

. . . .Formulation 2 – HJB

. . . . .Formulation 3

. . . . . .Formulation 4 – LMI

Hamilton-Jacobi-Bellman Approachcontd.

=⇒ minu[t,t+∆t]

{1

2(xTQx+ uTRu) + (Ax+Bu)TPx+

xTP (Ax+Bu) +H.O.T}= 0.

lim∆t→0

=⇒ minu

{1

2(xTQx+ uTRu)+

(Ax+Bu)TPx+ xTP (Ax+Bu)}= 0

Quadratic in u,=⇒ u∗ = −R−1BTPx.

Optimal controller is state-feedback.AERO 632, Instructor: Raktim Bhattacharya 19 / 30

Page 20: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

Variational Approach

Page 21: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

. . . . . .Lyapunov Stability

. . .Optimal State Feedback

. . . . .Formulation 1 – EL

. . . .Formulation 2 – HJB

. . . . .Formulation 3

. . . . . .Formulation 4 – LMI

A Third ApproachGiven dynamics

x = Ax+Bu,

with controller u = Kx, find K that minimizes

J :=1

2

∫ ∞

0(xTQx+ uTRu)dt =

1

2

∫ ∞

0xT (Q+KTRK)xdt.

The closed-loop dynamics isx = Ax+Bu = (A+BK)x = Acx.

The solution is therefore,x(t) = etAcx0.

The cost function is therefore,

J :=1

2xT0

(∫ ∞

0etA

Tc (Q+KTRK)etAcdt

)x0 =

1

2xT0 Px0.

AERO 632, Instructor: Raktim Bhattacharya 21 / 30

Page 22: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

. . . . . .Lyapunov Stability

. . .Optimal State Feedback

. . . . .Formulation 1 – EL

. . . .Formulation 2 – HJB

. . . . .Formulation 3

. . . . . .Formulation 4 – LMI

A Third Approachcontd.

Apply the following ‘trick’∫ ∞

0

d

dtetA

Tc (Q+KTRK)etAcdt =

ATc

(∫ ∞

0etA

Tc (Q+KTRK)etAcdt

)+

(∫ ∞

0etA

Tc (Q+KTRK)etAcdt

)Ac[

etATc (Q+KTRK)etAc

]∞0

= ATc P + PAc

OrAT

c P + PAc +Q+KTRK = 0,

Or(A+BK)TP + P (A+BK) +Q+KTRK = 0.

AERO 632, Instructor: Raktim Bhattacharya 22 / 30

Page 23: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

. . . . . .Lyapunov Stability

. . .Optimal State Feedback

. . . . .Formulation 1 – EL

. . . .Formulation 2 – HJB

. . . . .Formulation 3

. . . . . .Formulation 4 – LMI

A Third Approachcontd.

The optimal cost is therefore,

J∗ =1

2xT0 P

∗x0 =⇒ ∂J

∂P

∣∣∣P ∗

= 0.

Variation δP from P ∗ should result in δJ = 0

Let P = P ∗ + δP , =⇒ J = 12x

T0 P

∗x0 +1

2xT0 δPx0︸ ︷︷ ︸

δJ

δJ = 0 =⇒ δP = 0

AERO 632, Instructor: Raktim Bhattacharya 23 / 30

Page 24: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

. . . . . .Lyapunov Stability

. . .Optimal State Feedback

. . . . .Formulation 1 – EL

. . . .Formulation 2 – HJB

. . . . .Formulation 3

. . . . . .Formulation 4 – LMI

A Third Approachcontd.

Substitute P = P ∗ + δP , and K = K∗ + δK in the equalityconstraint

(A+BK)TP + P (A+BK) +Q+KTRK = 0,

to get,

(A+B(K∗ + δK))T (P ∗ + δP ) + (P ∗ + δP )(A+B(K∗ + δK))

+Q+ (K∗ + δK)TR(K∗ + δK) = 0,

or

(A+BK∗)TP ∗ + P ∗(A+BK∗) +Q+K∗TRK∗+

δP (A+BK∗) + (∗)T + δKT (BTP ∗ +RK∗) + (∗)T

+H.O.T = 0.

=⇒ K∗ = −R−1BTP ∗.

AERO 632, Instructor: Raktim Bhattacharya 24 / 30

Page 25: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

LMI Formulation

Page 26: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

. . . . . .Lyapunov Stability

. . .Optimal State Feedback

. . . . .Formulation 1 – EL

. . . .Formulation 2 – HJB

. . . . .Formulation 3

. . . . . .Formulation 4 – LMI

Problem FormulationFind gain K such that u = Kx minimizes∫ ∞

0(xTQx+ uTRu)dt,

subject to dynamicsx = Ax+Bu,

andx(0) = x0.

AERO 632, Instructor: Raktim Bhattacharya 26 / 30

Page 27: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

. . . . . .Lyapunov Stability

. . .Optimal State Feedback

. . . . .Formulation 1 – EL

. . . .Formulation 2 – HJB

. . . . .Formulation 3

. . . . . .Formulation 4 – LMI

An Upper Bound on the Cost-to-goIf ∃V (x) > 0 such that

dV

dt≤ −(xTQx+ uTRu).

Integrating from [0, T ], gives us∫ T

0

dV

dtdt ≤ −

∫ T

0(xTQx+ uTRu)dt,

orV (x(T ))− V (x(0)) ≤ −

∫ T

0(xTQx+ uTRu)dt.

Since V (x(T )) ≥ 0 for any T

=⇒ −V (x(0)) ≤ −∫ T

0(xTQx+ uTRu)dt,

AERO 632, Instructor: Raktim Bhattacharya 27 / 30

Page 28: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

. . . . . .Lyapunov Stability

. . .Optimal State Feedback

. . . . .Formulation 1 – EL

. . . .Formulation 2 – HJB

. . . . .Formulation 3

. . . . . .Formulation 4 – LMI

An Upper Bound on the Cost-to-goSince V (x(T )) ≥ 0 for any T

=⇒ −V (x(0)) ≤ −∫ T

0(xTQx+ uTRu)dt,

orV (x(0)) ≥

∫ ∞

0(xTQx+ uTRu)dt.

.Sufficient condition for upper-bound on cost-to-go...

......

If ∃V (x) > 0 such that

dV

dt≤ −(xTQx+ uTRu).

Idea:Minimize upper-bound to get optimal K.

AERO 632, Instructor: Raktim Bhattacharya 28 / 30

Page 29: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

. . . . . .Lyapunov Stability

. . .Optimal State Feedback

. . . . .Formulation 1 – EL

. . . .Formulation 2 – HJB

. . . . .Formulation 3

. . . . . .Formulation 4 – LMI

Optimization ProblemFind P = P T > 0 and K such that with V := xTPx,

minP,K

V (x(0)) = x(0)TPx(0) Cost Function

subject to

V ≤ −xT (Q+KTRK)x Constraint Function

.Or equivalently..

......

minP,K

trP

subject to

(A+BK)TP + P (A+BK) +Q+KTRK ≤ 0.

AERO 632, Instructor: Raktim Bhattacharya 29 / 30

Page 30: Quadratic Stability of Dynamical Systems - GitHub Pages LQR.pdf · Quadratic Stability of Dynamical Systems Raktim Bhattacharya ... Lyapunov Stability. . . Optimal State Feedback.

. . . . . .Lyapunov Stability

. . .Optimal State Feedback

. . . . .Formulation 1 – EL

. . . .Formulation 2 – HJB

. . . . .Formulation 3

. . . . . .Formulation 4 – LMI

Optimization Problem

minP,K

trP

subject to

(A+BK)TP + P (A+BK) +Q+KTRK ≤ 0.

Learn about Linear Matrix Inequalities

AERO 632, Instructor: Raktim Bhattacharya 30 / 30