Top Banner
Prognostic Multigene Expression Classification of Cancer Patients: a Route for Success Jo Vandesompele professor, Ghent University co-founder and CEO, Biogazelle 4 th International qPCR Symposium Freising, March 9, 2009
40

Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

Apr 24, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

Prognostic Multigene Expression Classification of Cancer Patients: a Route for Success

Jo Vandesompele

professor, Ghent University

co-founder and CEO, Biogazelle

4th International qPCR Symposium

Freising, March 9, 2009

Page 2: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

outline

background research & goals

neuroblastoma

prognostic marker selection

study design and workflow

RNA quality control

sample pre-amplification

normalization

data-analysis and results

Page 3: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

biomarker signature based stratification

Page 4: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

aim

development and validation of a robust prognostic gene signature for neuroblastoma using real-time qPCR

identifying patients with

increased risk in the current low risk and high risk group

good molecular signature in the current high risk group

better choice of risk-related therapy

Page 5: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

neuroblastoma

most frequent extra-cranial solid tumor in children

95% <10 years at diagnosis

1:100,000 children (< 15 years)

20 cases/year Belgium

700 cases/year USA

15% of childhood cancer deaths

originates from primitive (immature) sympathetic nervous system cells

remarkably variable clinical course

spontaneous regression or maturation

widespread metastasis and rapid death

Page 6: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

neuroblastoma

prognosis is dependent on

tumor stage (localized vs. metastatic disease)

age at diagnosis (< or > 1 year)

genetic defects: amplification MYCN, ploidy, loss of 1p, gain of 17q

Page 7: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

prognostic classification

misclassifications resulting in overtreatment or undertreatment

need for additional tumor-specific prognostic markers

current microarray gene expression studies

data overfitting

unstable gene lists

lack of overlap

biological & technical noise

much more genes than samples

probe annotation / platform

different risk definition

different data processing and analysis

Page 8: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

•meta-analysis of 7 published microarray gene expression studies

• literature screening of almost 800 abstracts from single-gene studies

selection of a top ranking list of 59 prognostic

markers

•two PCR-based assays

•capillary gel electrophoresis (Experion)RNA quality control 423

samples

sample pre-amplification (WT-Ovation)

analysis of 366 primary untreated neuroblastoma tumours using real-time

qPCR

•Prediction Analysis of Microarrays

•Kaplan-Meier

•Cox proportional hazards

data-analysis

study workflow

Page 9: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

towards real-time PCR signature profiling

100 ng total RNA

30 ng quality control

10 ng unbiased amplification

WT-Ovation (NuGEN)

PCR assay design and validation

sensitivity, specificity and efficiency

RTPrimerDB

(Pattyn et al., 2006, NAR; Lefever et al, 2009, NAR)

absolute standards

real-time PCR using 384-well format

sample maximization strategy

(Hellemans et al., Genome Biology, 2007)

360 tumors and 1 gene/plate

Page 10: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

WT-Ovation reproducibility

10.00

15.00

20.00

25.00

30.00

35.00

ACTB RPL13A 18S YWHAZ B2M GAPDH UBC HPRT1 SDHA HMBS

genes

me

an

Ct

(n=

3)

Stratagene

cell line A

cell line B

cell line C

mean of 5, 15 and 50 ng of total RNA amplified

Page 11: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

WT-Ovation amplification bias

median bias = 0.36, 90%tile bias = 0.61

0

10

20

30

40

50

60

70

80

90

100

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00

cum

mula

tive d

istr

ibution

bias (Cq)

Page 12: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

WT-Ovation amplification bias

median bias = 0.36, 90%tile bias = 0.61

0

10

20

30

40

50

60

70

80

90

100

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00

cum

mula

tive d

istr

ibution

bias (Cq)

no need for DNase treatment

no need for cleanup of amplified products

Page 13: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

qPCR reproducibility

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350 400

10 #100 #1,000 #10,000 #

within a 384-well plate: 4 x 96 replicates

Page 14: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

qPCR reproducibility

between two identical 384-well plates

maximum ΔCq: 0.45

15

20

25

30

35

40

15 20 25 30 35 40

Page 15: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

synthetic control

55 nucleotides

PAGE purification

blocking group

5 points dilution series: 15 molecules > 150.000 molecules

RCRP

absolute standards

stufferFP

Page 16: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

absolute standards

reproducibility across master mixes (5) and instruments (2)

0

5

10

15

20

25

30

35

1000000 100000 10000 1000 100 10

MM1

MM2

MM3

MM4

MM5

Page 17: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

absolute standards cross lab comparison

5 standards (triplicates)

5 reference genes + 5

other genes

366 samples

Page 18: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

5 standards (triplicates)

absolute standards cross lab comparison

average ΔCq standards

correction Cq samples

Cq

qPCR

instr

um

ent

1,

maste

rmix

1

Cq qPCR instrument 2, mastermix 2

16

18

20

22

24

26

28

30

32

34

36

16 18 20 22 24 26 28 30 32 34 36

Page 19: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

ARHGEF7 gene

366 samples

use of 5 standards (triplicates) for correction

absolute standards cross lab comparison

Cq

qPCR

instr

um

ent

1,

maste

rmix

1

Cq qPCR instrument 2, mastermix 2

16

18

20

22

24

26

28

30

32

34

36

16 18 20 22 24 26 28 30 32 34 36

Page 20: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

SPUD assay (Nolan et al, 2006):

detection of inhibitors

Computed gel analysis (Experion, Biorad):

evaluation of total RNA quality

5’-3’ assay (HPRT1):

evaluation of mRNA integrity

rigorous control of RNA quality

423 primary untreated NB (100 ng total RNA)

30 ng

353 RNA samples

Page 21: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

differences in reference gene ranking between intact and degraded RNA

(Perez-Novo et al., Biotechniques, 2005)

impact of RNA quality on expression stability

Page 22: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

RNA quality parameters

2 4 6 8 10

010

20

30

40

50

0 5 10 15 20

020

40

60

80

5 10 15 20 25

020

40

60

80

RQI 5’-3’ dCq AluSq Cq

frequency

Page 23: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

delta-Cq 5’-3’ vs. RQI

-50

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250 300 350 400 450

RQI

delta-Ct

RNA samples ordered by average rank (good -> worse)

Page 24: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

RNA quality control & sample selection

423 samples:

4 samples < DOT/DOO without event

5 samples < presence of enzymatic inhibitors (SPUD)

20 samples < lack of mRNA integrity (no ΔCq 5’-3’)

o 12/14 failed WT-Ovation

o all low RQI values

28 samples < poor RNA quality (RQI + ΔCq 5’-3’)

366 best samples (86.5 %)

RQI:

o average = 7.4

o median = 7.6

o 90%-tile > 6.1

ΔCq 5’-3’:

o average = 2.36

o median = 2.06

o 90%-tile < 4.75

Page 25: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

normalisation using geNorm technology

framework for qPCR gene expression normalisation using the reference gene concept:

quantified errors related to the use of a single reference gene

(> 3 fold in 25% of the cases; > 6 fold in 10% of the cases)

developed a robust algorithm for assessment of expression stability of candidate reference genes

proposed the geometric mean of at least 3 reference genes for accurate and reliable normalisation

Vandesompele et al., Genome Biology, 2002

Page 26: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

http://medgen.ugent.be/genorm

geNorm software

automated analysis

ranking of candidate reference genes according to their stability

determination of how many genes are required for reliable normalization

Page 27: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

0.003

0.0060.0210.0230.056

NF4

NF1

cancer patients survival curve

statistically more significant results

geNorm validation (I)

log rank statistics

Hoebeeck et al., Int J Cancer, 2006

Page 28: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

mRNA haploinsufficiency measurements

accurate assessment of small expression differences

geNorm validation (II)

Hellemans et al., Nature Genetics, 2004

patient / control

3 independent experiments

95% confidence intervals

Page 29: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

use of multiple references is now well established

> 1250 citations of our geNorm technology in PubMed

> 8000 geNorm downloads in 100 countries

normalisation using multiple stable reference genes

Page 30: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

data analysis using qbasePLUS

based on Ghent University’s geNorm and qBase technology

up to fifty 384-well plates

multiple reference genes for accurate normalization

detection and correction of inter-run variation

dedicated error propagation

automated analysis; no manual interaction required

data analysis

http://www.qbaseplus.com – booth in room S1

Page 31: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

data analysis using qbasePLUS

based on Ghent University’s geNorm and qBase technology

up to fifty 384-well plates

multiple reference genes for accurate normalization

detection and correction of inter-run variation

dedicated error propagation

automated analysis; no manual interaction required

59 prognostic markers + 5 reference genes

364 samples (2 failed for 1 reference gene)

hierarchical clustering

survival analysis

Prediction Analysis of Microarrays

Cox proportional hazards modeling

Kaplan-Meier

data analysis

Page 32: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

Prediction Analysis of Microarrays

PAM

training test

15 low risk 15 high risk 334 samples

PFS OS

Page 33: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

classification of patients with respect to PFS and OS

0 50 100 150

OS total SIOPEN cohort (n = 313)

su

rviv

al p

rob

abili

ty (

%)

LR n=245 (5)

HR n=68 (27)

p = <0.001 (log-rank)0

20

40

60

100

80

time (months)

0 50 100 150

PFS total SIOPEN cohort (n = 312)

su

rviv

al p

rob

abili

ty (

%) LR n=245 (42)

HR n=67 (35)

p = <0.001 (log-rank)0

20

40

60

100

80

time (months)

Page 34: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

value of the classifier in relation to currently used risk factors: PFS

0 50 100 150

0 20 40 60 80 100 0 10 20 30 40 50 60 70

LR n=94 (17) LR n=152 (25) LR n=234 (39)

LR n=222 (31)LR n=8 (1)

LR n=24 (11)

HR n=48 (24) HR n=31 (18)

HR n=34 (21)

HR n=34 (15)HR n=34 (17)

HR n=20 (12)

p = <0.001 (log-rank)

p = <0.001 (log-rank)

p = <0.001 (log-rank)p = <0.001 (log-rank)

p = 0.12 (log-rank)

time (months)

0 50 100 150

time (months)

0 50 100 150

time (months)

0 50 100 150time (months)time (months)time (months)

100

80

60

40

20

0

su

rviv

al p

rob

ab

ility

(%

) 100

80

60

40

20

0

su

rviv

al p

rob

ab

ility

(%

)

100

80

60

40

20

0

su

rviv

al pro

ba

bili

ty (

%)

100

80

60

40

20

0

su

rviv

al pro

ba

bili

ty (

%)

100

80

60

40

20

0

su

rviv

al p

rob

ab

ility

(%

)su

rviv

al p

rob

ab

ility

(%

)

PFS age <=12 months (n = 172)

PFS not stage 4 (n = 256)PFS stage 4 (n = 58)PFS amplification (n = 42 )MYCN

PFS single copy (n = 265)MYCNPFS age > 12 months (n = 142)

p = 0.22 (log-rank)

100

80

60

40

20

0

Page 35: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

Cox multivariate analysis

independentpredictor

(age, stage, MYCN)

multivariatecox analysis

PAM classifier

strong independent predictor:

patients with high molecular risk have

a 19-fold higher risk to die from diseasea 4-fold higher risk for relapse/progression

compared to patients with low molecular risk

Page 36: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

RNA quality control cut-off

depends on the application

microarray vs. qPCR

expression difference of the target(s)

abundance & stability of the target(s)

fresh frozen vs. FFPE

based on the performance of our classifier

ROC AUC accuracy analysis

bad good

RQI <3: 0.27 3: 0.82

5’-3’ dCq >7: 0.43 7: 0.79

AluSq Cq >15: 0.13 15: 0.81

Page 37: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

conclusions (I)

validation matters – quality control along the entire workflow

assay performance

template quality

normalization

data-analysis

http://www.sabustin.org

Page 38: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

conclusions (II)

largest qPCR gene-expression study (rigourous RNA quality control)

optimized workflow

using minimal amounts of RNA (100 ng)

use of absolute standards (cross-lab comparison)

selected gene list (59) on a large panel of tumours (589)

robust multigene expression prognostic classifier

validated on an independent set of tumours

independent after controling for other known risk factors

suitable for routine lab tests

this study might form the basis for future research, i.e. prospective studies

cDNA library source for future qPCR gene expression studies

Page 39: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

Frank Speleman

Jo Vandesompele

Nadine Van Roy

Katleen De Preter

Jasmien Hoebeeck

Filip Pattyn

Tom Van Maerken

Joëlle Vermeulen

Center for Medical Genetics, Ghent, Belgium

Geneviève Laureys

Gianpaolo Tonini

Olivier Delattre

Jean Bénard

Valérie Combaret

Raymond Stallings

Angelika Eggert

Akira Nakagawara

Matthias Fischer

Grants: Childhood Cancer Fund, Emmanuel van der Schueren foundation, UGent-GOA, FWO, IUAP, IWT

Collaborators

Nurten Yigit

Els De Smet

Liesbeth Vercruysse

Anne De Paepe

acknowledgements

Page 40: Prognostic Multigene Expression ... - Gene-Quantification using geNorm technology framework for qPCR gene expression normalisation using the reference gene concept: quantified errors

Frank Speleman

Jo Vandesompele

Nadine Van Roy

Katleen De Preter

Jasmien Hoebeeck

Filip Pattyn

Tom Van Maerken

Joëlle Vermeulen

Center for Medical Genetics, Ghent, Belgium

Geneviève Laureys

Gianpaolo Tonini

Olivier Delattre

Jean Bénard

Valérie Combaret

Raymond Stallings

Angelika Eggert

Akira Nakagawara

Matthias Fischer

Grants: Childhood Cancer Fund, Emmanuel van der Schueren foundation, UGent-GOA, FWO, IUAP, IWT

Collaborators

Nurten Yigit

Els De Smet

Liesbeth Vercruysse

Anne De Paepe

acknowledgements