Top Banner
Probabilistic Graphical Models 輪読会 Chapter 5 Local Probabilistic Models 島田大樹
56

Probabilistic Graphical Models 輪読会 Chapter5

Feb 07, 2017

Download

Engineering

Daiki Shimada
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Probabilistic Graphical Models

    Chapter 5 Local Probabilistic Models

  • CPDtbd

  • 5.1 Tabular CPDsCPD CPTs V al(Pa ) V al(X)

    2X252 = 32

    A B Px|A,B

    1 1 0.2

    1 0 0.1

    0 1 0.3

    0 0 0.4

    x5

  • 5.2 Deterministic CPDs

    5.2.1 Representation

    X CPDf : V al(Pa ) V al(X)CPD

    P (xPa ) =

    f[2] or / and[] X = Y + Z

    X

    X {10

    x = f(Pa )Xotherwise

  • 5.2.2 Independencies

    Example 5.3

    2CAB

    ABC(D EA,B)

    CABdseparation

    dseparation

  • 5.2.2 Independencies

    (X Y Z) deterministic CPDPaX (Z ) X Z dseparation

    i+

    i+

  • 5.2.2 Independencies

    5.1GD,X,Y ,ZZXY deterministically separated P I (G) PP (XPa )X DP (X Y Z)

    exercise 5.1

    l

    X

  • 5.2.2 Independencies

    5.2GD,X,Y ,ZDETSEP(G,D,X,Y ,Z)P I (G) PP (XPa )X DP (X Y Z)

    DETSEP

    l

    X

  • 5.2.2 Independencies

    Example 5.4

    CBAXOR

    ACB(D EB,C)

  • 5.2.2 Independencies

    Revisit Example 5.3 (Example 5.5)

    CABOR

    A = a CORB

    P (DB, a ) = P (Da )BDA = a CP (XY ,Z) = P (XZ)(X Y Z)

    1

    1 1

    0

  • 5.2.2 Independencies

    Definition 5.1

    X,Y ,ZCX Y Zcc V al(C)

    P (XY ,Z, c) = P (XZ, c)whereneverP (Y ,Z, c) > 0

    Z(X Y Z, c)cXY contextually independent

    contextspecific independencies CSI

    c

  • 5.2.2 Independencies

    Revisit Example 5.3 with CSI (Example 5.6)

    CABOR

    A = a BC = c (C Ba )(D Ba )

    C = c A = a B = b (A Bc )(D Ec )

    C = c B = b A = a (D Eb , c )

    1 1

    c1

    c1

    0 0 0

    c0

    c0

    1 0 1

    c0 1

  • 5.3 Context-Specific CPDs

    5.3.1 Representation

    Example 5.7

    Job ... Apply ... SATLetterLetterSAT,SATLetterP (J a , s , l ) = P (J a , s , l )1 1 1 1 1 0

  • 5.3.1.1 Tree-CPDs

    Example 5.7 with Tree-CPD (Example 5.8)

    J""

    ex. P (J a , s , l )J : P (j ) = 0.1, andP (j ) = 0.9

    1 1 0

    0 1

  • 5.3.1.1 Tree-CPDs

    Definition 5.2

    1 rooted treettP (X)

    tZ Pa Ztarc, Z = z forz V al(Z)t2

    X

    i i

  • 5.3.1.1 Tree-CPDs

    Example 5.9

    SAT84treeCPD

    0

    1 1

  • 5.3.1.1 Tree-CPDs

    Revisit Example 3.7 (Example 5.10)

    JobChoiceLetter1Letter2CL L 1 2

  • 5.3.1.1 Tree-CPDs

    Revisit Example 3.7 (Example 5.10)

    CPD multiplexer CPD

    Definition 5.3

    V al(A) = {1, ..., k}P (Y a,Z , ...,Z ) = 1 {Y = Z } CPD P (Y A,Z , ...,Z ) multiplexer CPD

    multiplexer CPDex.10Choice

    1 k a

    1 k

  • 5.3.1.1 Tree-CPDs

    Revisit Example 3.7 (Example 5.10)

    CL ,L LJL

    1 2

  • 5.3.1.1 Tree-CPDs

    CPDCPD

  • 5.3.1.2 Rule CPDs

    Definition 5.4 rule

    c; pcCp [0, 1]CScope[]

  • 5.3.1.1 Tree-CPDs

    Revisit Example 5.7 (Example 5.11)

    CPDP (XPa )CPD

    X

  • 5.3.1.2 Rule CPDs

    Definition 5.5 rulebased CPD

    rulebased CPD P (XPa )R

    RScope[] {X} Pa

    {X} Pa (x,u)c(x,u)c; p RP (XU) P (xu) = 1CPD

    Example 5.11

    X

    X

    X

    x

  • 5.3.1.2 Rule CPDs

    Example 5.12

    XPa = {A,B,C}XCPD

    CPD1

    X

  • 5.3.1.2 Rule CPDs

    Proposition 5.1

    BBCPD P (XPa )R R R X,P () = p

    X

    X

    XX+

    X+

    c;pR,c

  • 5.3.1.2 Rule CPDs

    Revisit Example 5.12 with tree-CPD (Example 5.13)

    Example 5.12

  • 5.3.1.3 Other Representatioins

    decision diagram

  • 5.3 Context-Specific CPDs

    5.3.2 Independencies

    "a SL"

    contextspecificCPDCPDcontextspecific CPD

    0

  • 5.3.2 Independencies

    Revisit Example 5.7 with independence (Example 5.14)

    a SATLetter(J S,La )

    a , s Letter(J La , s )

    0

    c0

    1 1

    c1 1

  • 5.3.2 Independencies

    ctreeCPDX(Pa Scope[c])

    Pa = {A,S,L}Scope[c] = {A}, (J S,La )

    Scope[c] = {A,S}, (J La , s )

    X

    J

    c0

    c1 1

  • 5.3.2 Independencies

    Revisit Example 5.10 with independence (Example 5.15)

    JobLetterLetter

    ex. (J L c )c 2 1

  • 5.3.2 Independencies

    Revisit Example 5.14 with rule (Example 5.16)

    s s a

    (J Ls )

    XYXcY

    1

    1

    c1

  • 5.3.2 Independencies

    Deifinition 5.6 reduced rule

    = c ; pC = ccc cc = c Scope[c ] Scope[c]Scope[c ] Scope[c]creduced rule [c] = c ; p R reduced rule R[c] = {[c] : R, c}

  • 5.3.2 Independencies

    Revisit Example 5.12 with reduced rule (Example 5.17)

    Example 5.12R[a ]

    a a

    1

    1 1

  • 5.3.2 Independencies

    Proposition 5.2 reduced rule

    RXrulebased CPDR RcY Pa Y Scope[c] = X R[c]Y Scope[] = (X Y Pa Y , c)

    exercise 5.4

    ""CSIY reduced rule exercise 5.7

    c

    X

    c X

  • 5.3.2 Independencies

    Revisit Example 5.7 with CSI-sep (Example 5.18)

    IntelligenceIntteligence

  • 5.3.2 Independencies

    A = a S J ,L J dseparation

    0

  • 5.3.2 Independencies

    Deifinition 5.7 spurious edge

    P (XPa )CPDY Pa cP (XPa )(X Y Pa {Y }, c )Y Xc spurious c = cPa Pa c

    CPDreduced rule spurious Y reduced ruleR[c]cY X spurious

    X X

    X c X

    X X

  • 5.3.2 Independencies

    CSIseparation

    CSIseparation CSIdseparation

    dseparation

  • 5.3.2 Independencies

    Revisit Example 5.7 with CSI-sep (Example 5.18)

    S J ,L J spurious aaJIJDdseparatedCSISEPa JIa dseparatedba , s

    0 0

    1 1

  • 5.3.2 Independencies

    CSIseparationcontextspecific

    Theorem 5.3

    G PP L (G)cX,Y ,ZXcZYCSIseparatedP (X T Z, c)

    exercise 5.8

    l

    c

  • 5.3.2 Independencies

    Revisit Example 5.10 with CSI-sep (Example 5.19)

    C = c L JspuriousJL L (L L J , c )C = c (L L J ,C)CSISEPspurious

    12

    1 2

    1 c 21

    21 c 2

  • 5.4 Independence of Causal Influence

    noisyor model

    generalized linear model

  • 5.4.1 The Noisy-Or Model

    Letter

    Letter Question Final paper

  • 5.4.1 The Noisy-Or Model

    2 causal mechanism

    P (l q , f ) = 0.8

    20%

    P (l q , f ) = 0.9

    10%

    1 1 0

    1 0 1

  • 5.4.1 The Noisy-Or Model

    0.2 0.1 = 0.02

    P (l q , f ) = 0.981 1 1

  • 5.4.1 The Noisy-Or Model

    QF

    = P ( q ) = 0.8 = P ( f ) = 0.9

    leak probabilityLetter = 0.0001

    Q q1 1

    F f1 1

    0

  • 5.4.1 The Noisy-Or Model

    Definition 5.8 noisyor CPD

    Yk2X , ...,X 2P (y X , ...,X ) = (1 ) (1 )P (y X , ...,X ) = 1 [(1 ) (1 )]k + 1 , , ..., PCD P (Y X , ...,X )noisyor

    x 1, x 0

    P (y X , ...,X ) = (1 ) (1 )

    1 k0

    1 k 0 i:X =xi i1 i1

    1 k 0 i:X =xi i1 i0 1 k

    1 k

    i1

    i0

    01 k 0

    i=1

    i xi

  • 5.4.1 The Noisy-Or Model

    noisyorXP (Y )

    a: = 0

    b: = 0.50

    0

  • 5.4.2 Generalized Linear Models

    causal influenceGeneralized Linear ModelsYP (Y X , ...X )

    1 k

  • 5.4.2 Generalized Linear Models

    5.4.2.1 2burdentotal burden ...

    f(X , ...,X ) = w X

    w

    f(X , ...,X )f(X , ...,X ) = w + w X

    w =

    1 k i=1k

    i i

    i

    1 k

    1 k 0 i=1k

    i i

    0

  • 5.4.2 Generalized Linear Models

    5.4.2.1 2

    sigmoid(z) = 1+ezez

  • 5.4.2 Generalized Linear Models

    5.4.2.1 2

    Definition 5.9 logistic CPD

    YkX , ...,X 2P (y X , ...,X ) = sigmoid(w + w X )k + 1w ,w , ...,w CPD P (Y X , ...,X )logistic CPD

    wY

    2y y O(X) = = = e

    X

    = = e

    1 k1

    1 k 0 i=1k

    i i

    0 1 k

    1 k

    1 0

    P (y X ,...,X )0 1 kP (y X ,...,X )1 1 k

    1/(1+e )ze /(1+e )z z z

    j

    O(X ,x )j j0

    O(X ,x )j j1

    exp(w + w X )0 ij i i

    exp(w + w X +w )0 ij i i j wj

  • 5.4.2 Generalized Linear Models

    5.4.2.1 2

    wlogical CPDb: w = 0, c: w = 5, d: ww 10

    bnoisyorw

    logistic CPDw X Y

    0 0 0

    i i

  • 5.4.2 Generalized Linear Models

    5.4.2.2 Yy , ..., y logistic CPDY"winnertakesall"y 10

    Definition 5.10 multinomial logistic PCD

    YkX , ...,X mj = 1, ...,ml (X , ...,X ) = w + w XP (y X , ...,X ) =

    k + 1w ,w , ...,w CPD P (Y X , ...,X )multinomial logistic CPD

    1 n

    i

    1 k

    i 1 k j,0 i=1k

    j,i ij

    1 k exp(l (X ,...,X ))j =1m

    j 1 k

    exp(l (X ,...,X ))j 1 k

    j,0 j,1 j,k

    1 k

  • 5.4.2 Generalized Linear Models

    5.4.2.2

    X ,X 3YX 2

    X = x , ...,x X = jX = x 2X , ...,X mX2Ym+ 1P (y X) = sigmoid(w + w 1{X = x })

    1 2

    i

    i i1

    im

    i i,j i,j1

    i,1 i,m

    10 j=1

    mj

    j

    chapter5_01chapter5_02