Top Banner
Practice Problems for Midterm 2, 2017 Problem 1) Fermi Gas and MB gas comparison A) Gold is a dense metal with density 1.93 × 10 4 kg i m 3 at T = 300K. Calculate its number density (n=N/V) in m 3 . Assume that a gold atom contributes one conducting electron, calculate its Fermi Energy, E F , in unit of eV. Repeat the calculation but with the assumption that one gold atom contributes two conducting electrons. Compare your answers with the experimental values of 5.53 eV, and comment. Molar mass of gold is 197 gmol -1 Atomic mass of gold (Au) is 197 u. We know 1 u = 1.67 × 10 27 kg , hence the mass of one gold atom is m Au = 197u × 1.67 × 10 27 kg i u 1 = 3.29 × 10 25 kg . The number density is N V = ρ m Au = 1.93 × 10 4 kg i m 3 3.29 × 10 25 kg = 5.87 × 10 28 m 3 . Using the mass of the electron, m e = 9.1 × 10 31 kg , and assuming one electron per gold atom N V = 5.87 × 10 28 m 3 . E F = h 2 8 m e 3 π N V 2/3 = 6.626 × 10 34 J i s ( ) 2 8 × 9.1 × 10 31 kg 3 π × 5.87 × 10 28 m 3 2/3 = 8.83 × 10 19 J . Using 1 eV = 1.6 × 10 19 J , E F = 8.83 × 10 19 J ÷ 1.6 × 10 19 eV i J 1 = 5.52eV .(2 points) Assuming two electron per gold atom N V = 2 × 5.87 × 10 28 m 3 = 1.17 × 10 29 m 3 . E F = h 2 8 m e 3 π N V 2/3 = 6.626 × 10 34 J i s ( ) 2 8 × 9.1 × 10 31 kg 3 π × 1.17 × 10 29 m 3 2/3 = 1.4 × 10 18 J . E F = 1.4 × 10 18 J ÷ 1.6 × 10 19 eV i J 1 = 8.8eV .(2 points) B) Use the answer of part A, to calculate the mean Thermal energy, E = U / N , where U is the internal (mean) energy of the system, as given by the equation in the appendix. For identical fermions, U = 3N ε F /5 E = U / N = 3 ε F /5 = 3.32eV (2 points) C) Assuming that the conducting electrons can be treated a classical ideal (MB) gas, find the mean thermal energy at 300K. Explain the discrepancy between the values of E obtained in part B and C. Use the equipartition theorem the thermal energy per particle is E = U N = 3 2 k B T = 3 2 1.381 × 10 23 J i K 1 ( ) 300 K ( ) = 6.21 × 10 21 J or 0.038 eV. This is not surprising since classical gas are allowed to occupy the same quantum states, but identical fermions (such as electrons) can not occupy the same low-energy quantum states making the Fermi energy much greater than the thermal energy (3 points)
9

Practice Problems for Midterm 2, 2017 - Lakehead University · Practice Problems for Midterm 2, 2017 Problem 1) Fermi Gas and MB gas comparison A) Gold is a dense metal with density

May 31, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Practice Problems for Midterm 2, 2017 - Lakehead University · Practice Problems for Midterm 2, 2017 Problem 1) Fermi Gas and MB gas comparison A) Gold is a dense metal with density

PracticeProblemsforMidterm2,2017Problem1)FermiGasandMBgascomparisonA)Goldisadensemetalwithdensity 1.93×10

4kg im−3 atT=300K.Calculateitsnumberdensity(n=N/V)inm−3 .Assumethatagoldatomcontributesoneconductingelectron,calculateitsFermiEnergy,EF ,inunitofeV.Repeatthecalculationbutwiththeassumptionthatonegoldatomcontributestwoconductingelectrons.Compareyouranswerswiththeexperimentalvaluesof5.53eV,andcomment.Molarmassofgoldis197g•mol-1Atomicmassofgold(Au)is197u.Weknow1u = 1.67 ×10−27 kg ,hencethemassofonegoldatomis mAu = 197u ×1.67 ×10

−27 kg iu−1 = 3.29 ×10−25 kg .Thenumber

densityis

NV

= ρmAu

= 1.93×104 kg im−3

3.29 ×10−25 kg= 5.87 ×1028m−3 .Usingthemassofthe

electron,me = 9.1×10−31kg ,andassumingoneelectronpergoldatom

NV

=5.87×1028m−3 .

EF = h2

8me3πNV

⎛⎝⎜

⎞⎠⎟2/3

=6.626 ×10−34 J i s( )28 × 9.1×10−31kg

3π× 5.87 ×1028m−3⎛

⎝⎜⎞⎠⎟2/3

= 8.83×10−19 J .

Using1eV = 1.6 ×10−19 J , EF = 8.83×10−19 J ÷1.6 ×10−19eV i J−1 = 5.52eV .(2points)

AssumingtwoelectronpergoldatomNV=2×5.87×1028m−3 =1.17×1029m−3 .

EF = h2

8me3πNV

⎛⎝⎜

⎞⎠⎟2/3

=6.626 ×10−34 J i s( )28 × 9.1×10−31kg

3π×1.17 ×1029m−3⎛

⎝⎜⎞⎠⎟2/3

= 1.4 ×10−18 J .

EF = 1.4 ×10−18 J ÷1.6 ×10−19eV i J−1 = 8.8eV .(2points)B) Use the answer of part A, to calculate themean Thermal energy,E =U /N ,whereUistheinternal(mean)energyofthesystem,asgivenbytheequationintheappendix.Foridenticalfermions,U = 3NεF / 5→ E =U / N = 3εF / 5 = 3.32eV (2points)C)Assumingthattheconductingelectronscanbetreatedaclassicalideal(MB)gas,findthemeanthermalenergyat300K.ExplainthediscrepancybetweenthevaluesofE obtainedinpartBandC.Usetheequipartitiontheoremthethermalenergyperparticleis

E = U

N= 32kBT = 3

21.381×10−23J iK−1( ) 300K( ) = 6.21×10−21J or0.038eV.Thisis

notsurprisingsinceclassicalgasareallowedtooccupythesamequantumstates,butidenticalfermions(suchaselectrons)cannotoccupythesamelow-energyquantumstatesmakingtheFermienergymuchgreaterthanthethermalenergy(3points)

Page 2: Practice Problems for Midterm 2, 2017 - Lakehead University · Practice Problems for Midterm 2, 2017 Problem 1) Fermi Gas and MB gas comparison A) Gold is a dense metal with density

Problem2)2DMaxwell-BoltzmanDistribution

a) In 2D the speed distribution becomesf2D v( ) = βmvexp −βmv

2

2⎛

⎝⎜⎞

⎠⎟with

v2 = vx

2 + v y2 ,material.Brieflyexplainthemathematicalmeaningoff2Ddv ,and

explain why the normalization off2D requires f2D dv =10

∫ . Verify by direct

integrationthat f2D dv =10

∫ .

f2Ddv istheprobabilitythattheparticlehasspeedintherangev tov +dv .Thetotalprobabilitymustequal1.Forcontinuousdistributionthenormalizationis

donebyintegration:

f2D dv = βmvexp −βmv2

2⎛

⎝⎜⎞

⎠⎟0

∫ =10

∫ .(1point)

Since

vexp −av2( )dv = − 12aexp −av2( )∫

dvf2D0

∫ = exp −βmv2

2⎛

⎝⎜⎞

⎠⎟⎡

⎣⎢⎢

⎦⎥⎥0

= −exp −βm∞2

2⎛

⎝⎜⎞

⎠⎟+exp −βm0

2

2⎛

⎝⎜⎞

⎠⎟=1

(3points)

b) Find the average speed in 2D,v of a neutron at T = 300K. Data: Mass of

neutroninequationsheet.HINT: x2exp −ax2( )dx0

∫ = π( )1/2 / 4a3/2( ) .

v = dvvf2D0

∫ = βmv2exp −βmv2

2⎛

⎝⎜⎞

⎠⎟0

∫ = βm π 1/2

4 βm/2( )1/2=

πkBT2m

⎝⎜⎞

⎠⎟

1/2

m=1.67×10−27kg , v = π ×1.381×10−23 J iK −1 ×300K

2×1.67×10−27kg⎛

⎝⎜⎞

⎠⎟

1/2

=1974ms(3points)

c)Usingdf2Ddv

=0 find themostprobablespeedofaneutronatT=300K,andcomparewithyouranswerinpartb.

Page 3: Practice Problems for Midterm 2, 2017 - Lakehead University · Practice Problems for Midterm 2, 2017 Problem 1) Fermi Gas and MB gas comparison A) Gold is a dense metal with density

df2Ddv

= βmexp −βmv2

2⎛

⎝⎜⎞

⎠⎟− β 2m2v2exp −βmv

2

2⎛

⎝⎜⎞

⎠⎟=0→ v* =

kBTm

⎝⎜⎞

⎠⎟

1/2

v* = 1.381×10−23 J iK −1 ×300K

1.67×10−27kg⎛

⎝⎜⎞

⎠⎟

1/2

=1575ms(3points)

Problem3)VibrationalEnergyLevelofHClandHBrmolecule.A)AssumethattheHClmoleculebehaveslikeaharmonicoscillatorwithaforceconstantof481N/m.Findtheenergy(ineV)ofitsground(n=0)andfirstexcited(n=1)vibrationalstates.DATA:For1H mH = 1u ;35Cl mCl = 35u ,and1 u = 1.66 ×10−27 kg .Notethedifferencebetweenangularfrequencyω (in s−1 )andν =ω / 2π (unitHz).

Use En = n +1/ 2( )!ω , n = 0,1,2... ,whereω = kµ, andµ =

m1m2

m1 + m2

.

µ = mHmCl

mH +mCl

= 1u × 35u1u + 35u

= 0.97u ×1.66 ×10−27 kg iu−1 = 1.614 ×10−27 kg (1point)

ωHCl =kµ= 481N /m

1.614 ×10−27 kg= 5.46 ×1014 s−1 (1point)

Ground(n=0)

E0HCl = 0.5!ω = 0.5 ×1.055 ×10−34 J • s × 5.46 ×1014 s−1 = 2.88 ×10−20 J = 0.18eV (1

point)FirstExcited(n=1)

E1HCl = 1.5!ω = 1.5 ×1.055 ×10−34 J • s × 5.46 ×1014 s−1 = 8.64 ×10−20 J = 0.54eV (1

point)B)Bromide(80Br mBr = 80u )andCholrine(35Cl mCl = 35u )aregroup17intheperiodictable.Inoneortwosentences,usetheprevioussentencetojustifywhyHBRmoleculeshouldhavesimilarforceconstant,k,asHCl.Thensssumekarethesame,andcalculatethegroundstatevibrationalenergyofHBr.

HBr µ = mHmBr

mH +mBr

= 1u × 80u1u + 80u

= 0.988u ×1.66 ×10−27 kg iu−1 = 1.64 ×10−27 kg (1point)

IfweassumethatHBrhasthesameforceconstant(sincebondingisachemicalpropertythatdependsonelectronclouddistributions,andisindependentofnuclearmass)asHBrthen

ωHBr =kµ= 481N /m

1.64 ×10−27 kg= 5.42 ×1014 s−1 (1point)

Ground(n=0)

E0HBr = 0.5!ω = 0.5 ×1.055 ×10−34 J • s × 5.42 ×1014 s−1 = 2.86 ×10−20 J = 0.178eV ,which

isslightlysmallerthanthevalueforHCl.(1point)

Page 4: Practice Problems for Midterm 2, 2017 - Lakehead University · Practice Problems for Midterm 2, 2017 Problem 1) Fermi Gas and MB gas comparison A) Gold is a dense metal with density

C)SpectroscopicdatafoundthatthetransitionvibrationalfrequencyofHClandHBrare vHCl = 8.66 ×10

13Hz and vHBr = 7.68 ×1013Hz .Isthisdataconsistentwiththe

findingofpartB?Iftheanswerisno,discusswhyinnomorethanfoursentences.FrompartA, vHCl

Theory =ωHCl / 2π = 5.46 ×1014 s−1 / 2π = 8.69 ×1013Hz FrompartB, vHBr

Theory =ωHBr / 2π = 5.42 ×1014 s−1 / 2π = 8.63×1013Hz (1point)Hence vHCl

Theory ≈ vHBrTheory .However,theobservedvaluesare vHCl

Theory > vHBrTheory .Thismeans

thattheassumptionthattheforceconstantofHClandHBrarethesameisnotcompletelyvalid.(2points)Problem4)RotationalspectroscopyTherotationalenergyofadiatomicmolecule

is Erot =

ℓ ℓ+1( )"22I

.

(A)Inaphotonabsorptionexperimentadiatomicmoleculeabsorbsaphoton,andmakesatransitionfromthe ℓ rotationalstatetothe ℓ +1 rotationalstate.Show

explicitlythattheenergyofthephotonis ΔEphoton =

ℓ+1( )"2I

.

For ℓth rotationalstate Erot =

ℓ ℓ+1( )"22I

and ℓ+1th rotationalstate

Erot =

ℓ+1( ) ℓ+ 2( )"22I

=ℓ2 + 3ℓ+ 2( )"2

2I,

whichgives ΔEphoton =

ℓ2 + 3ℓ+ 2( )"22I

−ℓ ℓ+1( )"2

2I=2ℓ+ 2( )"22I

=ℓ+1( )"2I

.(2points)

(B)Aphotonoffrequencyν = 5.1×1011Hz isabsorbedbythediatomicmoleculeHBrresultinginatransitionfromthe ℓ = 0 tothe ℓ = 1 rotationalstate.Usethisinformationtodeterminetheaveragebondlengthofthemolecule.For1H,

mH =1amu ;80Br,mBr =80amu ;where1amu =1.66×10−27kg .80amu =Brm ;where kg271066.1amu 1 −×= .

mH = 1 amu × 1.66 ×10-27kg / amu( ) = 1.66 ×10−27 kg mBr = 80amu × 1.66 ×10-27kg / amu( ) = 1.32 ×10−25 kg (0.5point)

Reducedmassµ =mHmBr

mH + mBr

=1.66 ×10−27 kg( ) 1.32 ×10−25 kg( )1.66 ×10−27 kg +1.32 ×10−25 kg

= 1.64 ×10−27 kg.

(0.5point)Considertheenergyofphotonsproducedby ℓ→ ℓ +1transition:

hν = ΔEphoton =

ℓ +1( )"2I

→ν =ℓ +1( )h2π( )2 I

,set ℓ = 0 anduse I = µR2 toobtain

Page 5: Practice Problems for Midterm 2, 2017 - Lakehead University · Practice Problems for Midterm 2, 2017 Problem 1) Fermi Gas and MB gas comparison A) Gold is a dense metal with density

v = h2π( )2 µR2

,whichgives(3points)

R =h

2π( )2 µv=

6.626 ×10−34 J • s2π( )2 ×1.64 ×10−27 kg × 5.1×1011Hz

= 1.42 ×10−10m (2points)

(C)Microwavecommunicationsystems(suchaswirelessconnectionsignals)operateoverlongdistancesintheatmosphere.Molecularrotationalspectraareinthemicrowaveregion.Brieflyexplainwhyatmosphericgasesdonotabsorbmicrowavestoanygreatextent.Theearth’satmosphereisfilledmostlywithsymmetricmoleculessuchasO2andN2,whichdonotpossesssymmetricdipolemoments,andconsequentlycannotinteractwithmicrowaveradiations.Thisallowsmicrowavetopropagateunhinderedintheatmosphere.(2points)Problem5SuperconductivityInthesuperfluidstate,liquidhelium-4atomsformBose-Einstein(BE)condensatethatformscirculatingvorticesthatdonotdissipate(i.e.donotslowdown).Inthesuperconductingstate,electronsinmetalsformBEcondensatethatconductwithnodissipation(theresistanceofasuperconductoriszero).(A)Notethatelectronsarefermions,butliquidhelium-4atomsarebosons.ExplainhowelectronsinsuperconductingmetalsformBEcondensate.Yourexplanation(nomorethan4sentences)shouldincludetheenergygapEg .Inthesuperconductingstate,twoelectronsareattractivetoeachotherduetophonon-mediatedinteractions.Thetwoelectronsformsacooperpairwithtotalspinzero,andhencearebosonsthatcanformBEcondensate.(1.5points)ThebondingenergyofacooperpairiscalledthegapenergyEg .Thisistheenergyneededtobreakthebondbetweenacooperpair.(1.5points)(B)ThecriticaltemperatureofthesuperconductingstateofVanadiumisTC = 5.4KanditszerotemperatureenergygapisEg 0( ) = 15.8 ×10−4 eV .WhatfractionofelectronsinVanadiumisinthesuperconductingstateattemperatureT = 3.0K ?WhatistheenergygapatT = 3.0K ?Note:assumesuperconductorsobeythesamecondensatefractionequationassuperfluidhelium–seeequationssheet!!

Page 6: Practice Problems for Midterm 2, 2017 - Lakehead University · Practice Problems for Midterm 2, 2017 Problem 1) Fermi Gas and MB gas comparison A) Gold is a dense metal with density

VanadiumisinthesuperconductingstateattemperatureT = 3.0K ?WhatistheenergygapatT = 3.0K ?Note:assumesuperconductorsobeythesamecondensatefractionequationassuperfluidhelium–seeequationssheet!!

UseF = 1− T /Tc( )3/2 = 1− 3.0K5.4K

⎛⎝⎜

⎞⎠⎟3/2

= 0.58 (Thisequationisnotpartof2018W

midterm2)so0.58offreeelectronsareinsuperconductingstate.Eg T = 3( ) = 1.74Eg 0( ) 1− T /Tc( )( )1/2 = 1.74 ×15.8 ×10−4 eV 1− 3K / 5.4K( )( )1/2

= 1.83×10−3eV (2points)(C)TheisotopeeffectequationstatesthatM 0.5TC ≡ constant ,whereMistheatomicmassoftheelement.Innomorethanfoursentencesexplaintheunderlyingphysicalbasisofthisequation.Twonegativelychargeelectronsareelectricallyrepulsive,sotheremustbeanattractiveforcethatmediatesthe“bonding”oftwoelectronstoformaCooperpair.Asdiscussedthisforceisduetolatticevibrationthatcreatesquantummodescalledphonons.Thelatticevibrationeffectisgreaterforlighteratoms,whichhassmalleratomicmass,M.Hencethecriticaltemperature,TC ,ishigher(superconductingstateoccursathighertemperature)forlighterelements,andTC ∝M −0.5 .(2points)UsingM 0.5TC ≡ constant → MV

0.5TC ,V = MHg0.5TC ,Hg ,whereV ≡ Vadanium,Hg ≡Mercury.

TC ,Hg = MV /MHg( )0.5TC ,V = 50u / 201u( )1/2 5.4K = 2.7K (2points)Thecalculatedvalueissignificantlysmallerthanactualexperimentalvalue.HoweveritisstillconsistentwiththeisotopeeffectthatpredictsalowerTC forheavierelements(1point)(D)VanadiumhasatomicmassmV = 50u ,andMercury(Hg)hasatomicmassmHg = 201u .Usethistoestimatethecriticaltemperatureofmercury.TheactualexperimentalonHgisTC = 4.2K .Innomorethanthreesentences,discusswhetheryourcalculationsvalidatetheisotopeeffectofsuperconductivity.UsingM 0.5TC ≡ constant → MV

0.5TC ,V = MHg0.5TC ,Hg ,whereV ≡ Vadanium,Hg ≡Mercury.

TC ,Hg = MV /MHg( )0.5TC ,V = 50u / 201u( )1/2 5.4K = 2.7K (2points)Thecalculatedvalueissignificantlysmallerthanactualexperimentalvalue.HoweveritisstillconsistentwiththeisotopeeffectthatpredictsalowerTC forheavierelements(1point)

Page 7: Practice Problems for Midterm 2, 2017 - Lakehead University · Practice Problems for Midterm 2, 2017 Problem 1) Fermi Gas and MB gas comparison A) Gold is a dense metal with density

Problem6Ro-vibrationalspectrumofCOisshownbelow:UsethedataabovetocalculatethebondlengthandbondspringconstantkofCO.Experimentaldata:R=1.13×10−10m,k=1860N/m.Usethesamemethodasforquestion5ofassignment5

Page 8: Practice Problems for Midterm 2, 2017 - Lakehead University · Practice Problems for Midterm 2, 2017 Problem 1) Fermi Gas and MB gas comparison A) Gold is a dense metal with density

UsefulEquationsCanonicalEnsemble:ConstantVolume,V,particlenumber,N,andtemperature,T.ProbabilityofsystemoccupyingastatewithenergyEisproportionaltotheBoltzmanfactor∝exp −βE( ) ,Maxwell-Boltzman3Dspeeddistribution.FMB v( )dv = 4πN m / 2πkBT( )( )3/2 v2 exp −mv2 / 2kBT( )( )dv ;root-mean-squarespeed

vrms = v2 = 3kBTm

;meanspeedv =

8kBTπm

2Dspeeddistributionf2D v( ) = βmvexp −βmv

2

2⎛

⎝⎜⎞

⎠⎟withv

2 = vx2 + v y

2 ,v = dvvf2D v( )0

∫ ;

3DspeeddistributionIdealgasU =f2kBT fisquadraticdegreeoffreedom;

PV = NKBT = 2U / 3 ;U = 3NkBT / 2 .

RotationalLevels: Eℓ =

L2

2I=ℓ ℓ +1( )2I

"2 ,ℓ = 0,1,2...,where I = µR2 andµ =m1m2

m1 + m2

.

Emission/absorption of photons: i) selection rule Δℓ = ±1; ii) hν = ΔEℓ↔ℓ−1.

ΔEℓ↔ℓ−1 = Eℓ − Eℓ−1 = ℓ"

2

I.Separationbetweenadjacentlines

!

2

I.VibrationalLevel

Evibr = n +1 / 2( )!ω , n = 0,1,2... ,where ω =kµ, and µ =

m1m2

m1 + m2

.

ΔEn+1↔n = En+1 − En = !ω . Absorption and Emission of photons: i) selection ruleΔn = ±1; ii)hν = ΔEn+1↔n . DissociationEnergy( 0U ): Evibr = n +1 / 2( )!ω −U0 .

Ro-vibrational energy is En ,ℓ = "ω n+ 12

⎛⎝⎜

⎞⎠⎟+ "

2

2I ℓ ℓ+1( ) , with the first termassociatedwithvibrationwithquantumnumber,n=0,1,2,…,andthesecondwiththe rotational modes wit quantum numbers ℓ =0,1,2.. Selection Rules

Δn= nf −n0 = ±1 and Δℓ = ℓ f − ℓ0 =0,±1 ,Q-branch Δℓ =0 ;R-branch Δℓ = +1 ;P-branch Δℓ = −1 . Wavenumber ν =1/λ→ν = Eph /hc , Eph is photon energy,

E = hν and

λ = c /ν ,where

c = 2.998 ×108m /s.Fermi-Dirac(FD) fFD = 1/ e ε−µ( )/kBT +1( ) . Bose-Einstein(BE) fBE = 1/ e

ε−µ( )/kBT −1( ) .Fermi Energy εF = h2 / 2m( ) 3N / 8πV( )( )2/3 ; TF = εF / kB ; uF = 2εF /m ;U = 3NεF / 5 ;PV = 2U / 3 Usefulconstants:Atomicmassunit(u)1u

=1.66 ×10−27kg;electronrestmass

me = 9.11×10−31kg;protonmass

mp =1.66 ×10−27kg;

e =1.6 ×10−19C;

1 eV = 1.6 ×10−19J;

h = 6.62 ×10−34 J • s = 4.136 ×10−15eV • s;

! =1.055 ×10−34 J • s = 6.582 ×10−16eV • s;Bohr

Page 9: Practice Problems for Midterm 2, 2017 - Lakehead University · Practice Problems for Midterm 2, 2017 Problem 1) Fermi Gas and MB gas comparison A) Gold is a dense metal with density

magneton µB =

e!2m

= 9.274 ×10−24 J /T ; kB = 1.381×10−23J /K = 8.617 ×10−5eV /K .

ε0 =8.854×10−12C2 /N •m2

SuperconductorM 0.5Tc = constant,Mistheatomicweightofthesubstance,whileTcisthecriticalortransitiontemperaturefromthenormaltothesuperconductingstate.EnergyGapEg 0( ) = 3.54kBTC ,Eg T( ) = 1.74Eg 0( ) 1− T /Tc( )( )1/2 ;criticalmagneticfield BC T( ) = BC 0( ) 1− T /Tc( )2( ) .Ferromagnetism:assumeoneunpairedelectroncancontributemagneticmomentof µB (up)or−µB (down),with µB = .MagnetizationM = N+ − N−( )µB ,N+ ≡ numberdensity of up spin,N− ≡ number density of down spin. Maximum magnetizationMmax = NµB ,Nisnumberdensityofunpairedspin.

UsefulIntegrals: exp −ax2( )dx0

∫ = π( )1/2 / 2a1/2( ) ; x2exp −ax2( )dx0

∫ = π( )1/2 / 4a3/2( ) ;

x4 exp −ax2( )dx0

∫ =3 π( )1/2 / 8a3/2( ) ; xexp −ax2( )dx0

∫ = 12a ;

x3exp −ax2( )dx0

∫ = 12a2 ;

exp −ax( ) = 1a0

∫ ;xexp −ax( ) = 1

a20

∫ ;x3exp −ax( ) = 6

a40

∫ .