Top Banner
POLLICOTT-RUELLE RESONANCES, FRACTALS, AND NONEQUILIBRIUM MODES OF RELAXATION Pierre GASPARD Brussels, Belgium J. R. Dorfman, College Park G. Nicolis, Brussels S. Tasaki, Tokyo T. Gilbert, Brussels D. Andrieux, Brussels • INTRODUCTION • TIME-REVERSAL SYMMETRY BREAKING • POLLICOTT-RUELLE RESONANCES • NONEQUILIBRIUM MODES OF RELAXATION: DIFFUSION • ENTROPY PRODUCTION & TIME ASYMMETRY IN DYNAMICAL RANDOMNESS OF NONEQUILIBRIUM FLUCTUATIONS • CONCLUSIONS
16

POLLICOTT-RUELLE RESONANCES, FRACTALS, AND NONEQUILIBRIUM MODES OF RELAXATION Pierre GASPARD Brussels, Belgium J. R. Dorfman, College Park G. Nicolis,

Mar 29, 2015

Download

Documents

Syed Edghill
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: POLLICOTT-RUELLE RESONANCES, FRACTALS, AND NONEQUILIBRIUM MODES OF RELAXATION Pierre GASPARD Brussels, Belgium J. R. Dorfman, College Park G. Nicolis,

POLLICOTT-RUELLE RESONANCES, FRACTALS,AND NONEQUILIBRIUM MODES OF RELAXATION

Pierre GASPARDBrussels, Belgium

J. R. Dorfman, College Park

G. Nicolis, Brussels

S. Tasaki, Tokyo

T. Gilbert, Brussels

D. Andrieux, Brussels

• INTRODUCTION

• TIME-REVERSAL SYMMETRY BREAKING

• POLLICOTT-RUELLE RESONANCES

• NONEQUILIBRIUM MODES OF RELAXATION: DIFFUSION

• ENTROPY PRODUCTION & TIME ASYMMETRY IN DYNAMICAL

RANDOMNESS OF NONEQUILIBRIUM FLUCTUATIONS

• CONCLUSIONS

Page 2: POLLICOTT-RUELLE RESONANCES, FRACTALS, AND NONEQUILIBRIUM MODES OF RELAXATION Pierre GASPARD Brussels, Belgium J. R. Dorfman, College Park G. Nicolis,

BREAKING OF TIME-REVERSAL SYMMETRY (r,p) = (r,p)

Newton’s equation of mechanics is time-reversal symmetric if the Hamiltonian H is even in the momenta.

Liouville equation of statistical mechanics, ruling the time evolution of the probability density p is also time-reversal symmetric.

The solution of an equation may have a lower symmetry than the equation itself (spontaneous symmetry breaking).

Typical Newtonian trajectories T are different from their time-reversal image T :T ≠ T

Irreversible behavior is obtained by weighting differently the trajectories T and their time-reversal image T with a probability measure.

Pollicott-Ruelle resonance (Axiom-A systems): (Pollicott 1985, Ruelle 1986)

= generalized eigenvalues s of Liouville’s equation associated with

decaying eigenstates singular in the stable directions Ws

but smooth in the unstable directions Wu :

ˆ L s with s complex

p

t H, p ˆ L p

Page 3: POLLICOTT-RUELLE RESONANCES, FRACTALS, AND NONEQUILIBRIUM MODES OF RELAXATION Pierre GASPARD Brussels, Belgium J. R. Dorfman, College Park G. Nicolis,

POLLICOTT-RUELLE RESONANCESgroup of time evolution: ∞ < t < ∞ statistical average of the observable A <A>t =<A|exp(L t)| p0 > = ∫ A() p0(t ) d

analytic continuation toward complex frequencies: L |> = s|> , < | L = s < |

• forward semigroup ( 0 < t < ∞): asymptotic expansion around t = ∞ :

<A>t = <A|exp(L t)| p0> ≈ ∑<A|> exp(s t) <| p0> + (Jordan blocks)

• backward semigroup (∞ < t < ): asymptotic expansion around t = ∞ :

<A>t = <A|exp(L t)| p0> ≈ ∑<A|°> exp(s t) <°| p0> + (Jordan blocks)

Page 4: POLLICOTT-RUELLE RESONANCES, FRACTALS, AND NONEQUILIBRIUM MODES OF RELAXATION Pierre GASPARD Brussels, Belgium J. R. Dorfman, College Park G. Nicolis,

DIFFUSION IN SPATIALLY PERIODIC SYSTEMSInvariance of the Perron-Frobenius operator under a discrete Abelian subgroup of spatial translations {a}:

common eigenstates:

eigenstate = nonequilibrium mode of diffusion:

ˆ P t exp( ˆ L t)

ˆ P t , ˆ T a 0

ˆ P t k exp(sk t) k

ˆ T a k exp(ik a) k

k

eigenvalue = Pollicott-Ruelle resonance = dispersion relation of diffusion:

(Van Hove, 1954) wavenumber: k

sk = lim t∞ (1/t) ln <exp[ i k•(rt r0)]>

= D k2 + O(k4)

diffusion coefficient: Green-Kubo formula

time

space

c

once

ntra

tion

wavelength = 2/k

D vx (0)vx (t) 0

dt

Page 5: POLLICOTT-RUELLE RESONANCES, FRACTALS, AND NONEQUILIBRIUM MODES OF RELAXATION Pierre GASPARD Brussels, Belgium J. R. Dorfman, College Park G. Nicolis,

FRACTALITY OF THE NONEQUILIBRIUM MODES OF DIFFUSION

The eigenstatek is a distribution which is smooth in Wu but singular in Ws.

cumulative function:

fractal curve in complex plane of Hausdorff dimension DH

Ruelle topological pressure:

Hausdorff dimension:

diffusion coefficient:

P. Gaspard, I. Claus, T. Gilbert, & J. R. Dorfman, Phys. Rev. Lett. 86 (2001) 1506.

Fk () limt

d ' exp[ik (rt r0) ']0

d ' exp[ik (rt r0) ']0

2

P(DH) DH Re sk

P() limt

1

t ln t

1 h() ()

DH(k) 1D

k2 O(k4 )

D limk 0

DH(k) 1

k2

Re sk Dk2 O(k4 )

Page 6: POLLICOTT-RUELLE RESONANCES, FRACTALS, AND NONEQUILIBRIUM MODES OF RELAXATION Pierre GASPARD Brussels, Belgium J. R. Dorfman, College Park G. Nicolis,

MULTIBAKER MODEL OF DIFFUSION

(l,x,y) l 1,2x,

y

2

, 0 x

1

2

l 1,2x 1,y 1

2

,

1

2 x 1

singular diffusive modes k :

cumulative function

Fk () k ( ')0

d '

(de Rham functions)

. . . . . .

ll-1 l+1. . . . . .

Hausdorff dimension :

DH ln2

ln(2cosk)

Page 7: POLLICOTT-RUELLE RESONANCES, FRACTALS, AND NONEQUILIBRIUM MODES OF RELAXATION Pierre GASPARD Brussels, Belgium J. R. Dorfman, College Park G. Nicolis,

PERIODIC HARD-DISK LORENTZ GAS

• Hamiltonian: H = p2/2m + elastic collisions• Deterministic chaotic dynamics• Time-reversal symmetric (Bunimovich & Sinai 1980)

cumulative functions Fk () = ∫0 k(’) d’

Page 8: POLLICOTT-RUELLE RESONANCES, FRACTALS, AND NONEQUILIBRIUM MODES OF RELAXATION Pierre GASPARD Brussels, Belgium J. R. Dorfman, College Park G. Nicolis,

PERIODIC YUKAWA-POTENTIAL LORENTZ GAS

• Hamiltonian:

H = p2/2m i exp(ari)/ri

• Deterministic chaotic dynamics• Time-reversal symmetric (Knauf 1989)

cumulative functions Fk () = ∫0 k(’) d’

Page 9: POLLICOTT-RUELLE RESONANCES, FRACTALS, AND NONEQUILIBRIUM MODES OF RELAXATION Pierre GASPARD Brussels, Belgium J. R. Dorfman, College Park G. Nicolis,

DIFFUSION IN A GEODESIC FLOW ON A NEGATIVE CURVATURE SURFACE

non-compact manifold in the Poincaré disk D:

spatially periodic extension of the octogon

infinite number of handles

cumulative functions Fk () = ∫0 k(’) d’

Page 10: POLLICOTT-RUELLE RESONANCES, FRACTALS, AND NONEQUILIBRIUM MODES OF RELAXATION Pierre GASPARD Brussels, Belgium J. R. Dorfman, College Park G. Nicolis,

FRACTALITY OF THE NONEQUILIBRIUM MODES OF DIFFUSION

Hausdorff dimension of the diffusive mode:

large-deviation dynamical relationship:

P. Gaspard, I. Claus, T. Gilbert, & J. R. Dorfman, Phys. Rev. Lett. 86 (2001) 1506.

Dk2 Re sk P(DH)

DH

(DH) h(DH)

DH

DH(k) 1D

k2 O(k4 )

hard-disk Lorentz gas

Yukawa-potential Lorentz gas

Re sk

h(DH)

DH

(DH)

Page 11: POLLICOTT-RUELLE RESONANCES, FRACTALS, AND NONEQUILIBRIUM MODES OF RELAXATION Pierre GASPARD Brussels, Belgium J. R. Dorfman, College Park G. Nicolis,

DYNAMICAL RANDOMNESS

Partition P of the phase space into cells representing the states of the system observed with a certain resolution.

Stroboscopic observation: history or path of a system: sequence of states 0 1 2 … n1 at successive times t = n

probability of such a path: (Shannon, McMillan, Breiman) P(0 1 2 … n1 ) ~ exp[ h(P) n ] entropy per unit time: h(P)

h(P) is a measure of dynamical randomness (temporal disorder) of the process: h(P) = ln 2 for a coin tossing random process.

The dynamical randomness of all the different random and stochastic processes can be characterized in terms of their entropy per unit time (Gaspard & Wang, 1993).

Deterministic chaotic systems: Kolmogorov-Sinai entropy per unit time: hKS = SupP h(P)

Pesin theorem for closed systems:

hKS i

i 0

Page 12: POLLICOTT-RUELLE RESONANCES, FRACTALS, AND NONEQUILIBRIUM MODES OF RELAXATION Pierre GASPARD Brussels, Belgium J. R. Dorfman, College Park G. Nicolis,

DYNAMICAL RANDOMNESS OF TIME-REVERSED PATHS

nonequilibrium steady state: P (0 12 … n1) ≠ P (n1 … 2 1 0)

If the probability of a typical path decays as

P() = P(0 1 2 … n1) ~ exp( h t n )

the probability of the time-reversed path decays as

P(R) = P(n1 … 2 1 0) ~ exp( hR t n ) with hR ≠ h

entropy per unit time:

h = lim n∞ (1/nt) ∑ P() ln P() = lim n∞

(1/nt) ∑ P(R) ln P(R)

time-reversed entropy per unit time: P. Gaspard, J. Stat. Phys. 117 (2004) 599

hR = lim n∞ (1/nt) ∑ P() ln P(R) = lim n∞

(1/nt) ∑ P(R) ln P()

The time-reversed entropy per unit time characterizes

the dynamical randomness (temporal disorder) of the time-reversed paths.

Page 13: POLLICOTT-RUELLE RESONANCES, FRACTALS, AND NONEQUILIBRIUM MODES OF RELAXATION Pierre GASPARD Brussels, Belgium J. R. Dorfman, College Park G. Nicolis,

THERMODYNAMIC ENTROPY PRODUCTION

nonequilibrium steady state:

thermodynamic entropy production:

1

kB

diS

dt= hR h 0

P() P(012n 1) exp n t h

P(R ) P(n 1210) exp n t hR exp n t h exp n t diS

dt

If the probability of a typical path decays as

the probability of the corresponding time-reversed path decays faster as

The thermodynamic entropy production is due to a time asymmetry in dynamical randomness.

entropy production

dynamical randomnessof time-reversed paths

hR

dynamical randomness of paths

h

P. Gaspard, J. Stat. Phys. 117 (2004) 599

Page 14: POLLICOTT-RUELLE RESONANCES, FRACTALS, AND NONEQUILIBRIUM MODES OF RELAXATION Pierre GASPARD Brussels, Belgium J. R. Dorfman, College Park G. Nicolis,

discrete-time Markov chains:

p P ' p ' P '

'

1

h p P '

, '

ln P '

iS hR h

ILLUSTRATIVE EXAMPLES

time-reversed entropy per unit time: P. Gaspard, J. Stat. Phys. 117 (2004) 599

Kolmogorov-Sinai entropy per unit time:

entropy production:

hR p P '

, '

ln P '

Markov chain with 2 states {0,1}:

hR h

Markov chain with 3 states {1,2,3}:

h ln2

(1 ) ln(1 )

iS hR h (1 32 ) ln

2(1 )

P

2 1

2

2

2 1

1 2

2

123123123123123123123123123 122322113333311222112331221equilibrium

Page 15: POLLICOTT-RUELLE RESONANCES, FRACTALS, AND NONEQUILIBRIUM MODES OF RELAXATION Pierre GASPARD Brussels, Belgium J. R. Dorfman, College Park G. Nicolis,

CONCLUSIONS• Breaking of time-reversal symmetry in the statistical description• Large-deviation dynamical relationships

Nonequilibrium transients:

Spontaneous breaking of time-reversal symmetry for the solutions of Liouville’s equation corresponding to the Pollicott-Ruelle resonances.

Escape rate formalism: escape rate , Pollicott-Ruelle resonance

diffusion D : D( / L )2 ≈ =(∑i i+hKS )L wavenumber k = / L

(1990)

viscosity : ( / )2 ≈ =(∑i i+hKS ) (1995)

Nonequilibrium modes of diffusion: relaxation rate sk, Pollicott-Ruelle resonance

D k2 ≈ Re sk = (DH) hKS(DH)/ DH (2001)

Nonequilibrium steady states:

The flux boundary conditions explicitly break the time-reversal symmetry. fluctuation theorem: = R() R() (1993, 1995, 1998)

entropy production: ________ = hR(P) h(P) (2004)

diS(P)

kB dt

Page 16: POLLICOTT-RUELLE RESONANCES, FRACTALS, AND NONEQUILIBRIUM MODES OF RELAXATION Pierre GASPARD Brussels, Belgium J. R. Dorfman, College Park G. Nicolis,

CONCLUSIONS (cont’d)

Principle of temporal ordering as a corollary of the second law:In nonequilibrium steady states, the typical paths are more ordered in time than the corresponding time-reversed paths. Boltzmann’s interpretation of the second law:Out of equilibrium, the spatial disorder increases in time.

http://homepages.ulb.ac.be/~gaspard

thermodynamic entropy production = temporal disorder of time-reversed paths temporal disorder of paths

= time asymmetry in dynamical randomness

________ = hR(P) h(P) diS(P)

kB dt