Top Banner
Manual EN PEM575 Universal measuring device Software version 2.00.xx PEM575_D00016_01_M_XXEN/05.2016 B 9310 0575 B 9310 0576 B 9310 0577 B 9310 0578 B 9310 0579 B 9310 0580
164

PEM575 - Bender

May 03, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: PEM575 - Bender

ManualEN

PEM575

Universal measuring deviceSoftware version 2.00.xx

PEM575_D00016_01_M_XXEN/05.2016

B 9310 0575

B 9310 0576

B 9310 0577

B 9310 0578

B 9310 0579

B 9310 0580

Page 2: PEM575 - Bender

Bender GmbH & Co. KGLondorfer Str. 65 • 35305 Gruenberg • GermanyPostfach 1161 • 35301 Gruenberg • Germany

Tel.: +49 6401 807-0Fax: +49 6401 807-259

E-Mail: [email protected]

© Bender GmbH & Co. KG

All rights reserved.Reprinting only with permission

of the publisher. Subject to change!Photos: Bender

Page 3: PEM575 - Bender

Table of Contents

1. Making effective use of this document ............................................... 9

1.1 How to use this manual ......................................................................................... 9

1.2 Technical support: Service and support ........................................................ 10

1.3 Workshops ............................................................................................................... 11

1.4 Delivery conditions, guarantee, warranty and liability ............................ 11

2. Safety ...................................................................................................... 13

2.1 Intended use ........................................................................................................... 13

2.2 Qualified personnel .............................................................................................. 13

2.3 General safety instructions ................................................................................ 14

3. Device description ............................................................................... 15

3.1 Area of application ................................................................................................ 15

3.2 Device features ....................................................................................................... 15

3.3 Versions ..................................................................................................................... 16

3.4 Application example ............................................................................................ 17

3.5 Description of function ....................................................................................... 17

3.6 Front view and rear view .................................................................................... 18

4. Installation and connection ............................................................... 19

4.1 Project planning ..................................................................................................... 19

4.2 Safety instructions ................................................................................................. 19

4.3 Installing the device ............................................................................................. 19

4.3.1 Dimension diagrams ................................................................................... 194.3.2 Front panel mounting ................................................................................ 20

4.4 Connection of the device ................................................................................... 21

4.4.1 Safety information ....................................................................................... 214.4.2 Back-up fuses ................................................................................................. 214.4.3 Connection of measuring current transformers ............................... 21

3PEM575_D00016_01_M_XXEN/05.2016

Page 4: PEM575 - Bender

Table of Contents

4.5 Instructions for connection ................................................................................ 21

4.6 Wiring diagram ....................................................................................................... 22

4.7 Connection diagram voltage inputs ............................................................... 23

4.7.1 Three-phase 4-wire system (TN, TT, IT system) .................................. 234.7.2 Three-phase 3-wire system ....................................................................... 244.7.3 Connection via voltage transformers ................................................... 25

4.8 Digital inputs ........................................................................................................... 25

4.9 Digital outputs ........................................................................................................ 26

4.10 Modbus TCP (connector pin assignment) .................................................... 26

5. Commissioning ...................................................................................... 27

5.1 Check proper connection ................................................................................... 27

5.2 Before switching on .............................................................................................. 27

5.3 Switching on ............................................................................................................ 27

5.4 System ....................................................................................................................... 27

6. Operation ............................................................................................... 29

6.1 Getting to know the operating elements .................................................... 29

6.2 LCD testing ............................................................................................................... 30

6.3 Getting to know standard display areas ....................................................... 30

6.4 Power and current demands (demand display) ......................................... 32

6.5 LED indication ......................................................................................................... 34

6.6 Standard display .................................................................................................... 34

6.7 Data display ............................................................................................................. 34

6.7.1 "V/I" button ..................................................................................................... 356.7.2 "POWER"button ............................................................................................ 376.7.3 "HARMONICS" button ................................................................................. 396.7.4 "ENERGY" button .......................................................................................... 40

6.8 Setup configuration via the front panel ........................................................ 41

6.8.1 Setup: Function of buttons ....................................................................... 416.8.2 Setup: Overview diagram menu ............................................................. 42

6.9 Setup: adjustment possibilities ........................................................................ 43

6.10 Configuration example: ....................................................................................... 49

4 PEM575_D00016_01_M_XXEN/05.2016

Page 5: PEM575 - Bender

Table of Contents

7. Application/inputs and outputs ......................................................... 51

7.1 Digital inputs (DI) ................................................................................................... 51

7.2 Digital outputs (DO) ............................................................................................. 51

7.3 Energy pulsing output ......................................................................................... 52

7.4 Power and energy ................................................................................................. 52

7.4.1 Basic measurements ................................................................................... 527.4.2 High-speed measurements ...................................................................... 537.4.3 Voltage and current phase angles ......................................................... 537.4.4 Energy .............................................................................................................. 53

7.5 Demand DMD ......................................................................................................... 53

7.5.1 Max/Min values per demand period ..................................................... 55

7.6 Setpoints ................................................................................................................... 55

7.7 Logic modules ........................................................................................................ 59

8. Logging ................................................................................................... 61

8.1 Peak demand log ................................................................................................... 61

8.2 Max/Min log ............................................................................................................. 61

8.3 Data recorder (DR) ................................................................................................. 62

8.3.1 Setup parameters ......................................................................................... 638.3.2 Selectable measured quantities for data recorders DR .................. 64

8.4 Energy log ................................................................................................................ 76

8.5 Waveform recording (WFR) ................................................................................ 77

8.6 Power Quality log (PQ log) ................................................................................. 78

8.7 Event log (SOE log) ................................................................................................ 79

9. Power Quality ........................................................................................ 81

9.1 Fundamentals ......................................................................................................... 81

9.2 Harmonic distortion .............................................................................................. 81

9.3 Deviation from the pre-set nominal value (ΔU, Δ❆) .................................. 83

9.4 Undervoltage/overvoltage setpoint (sag/swell setpoint) ...................... 84

9.5 Transient events setpoint ................................................................................... 84

9.6 Time synchronisation ........................................................................................... 84

5 PEM575_D00016_01_M_XXEN/05.2016

Page 6: PEM575 - Bender

Table of Contents

10. Modbus Register Map ........................................................................ 85

10.1 Basic measurements ............................................................................................. 87

10.2 Energy measurement ........................................................................................... 91

10.3 Pulse counter .......................................................................................................... 92

10.4 Fundamental measurements (Power quality) ............................................. 93

10.5 Harmonic measurements (Power quality) .................................................... 95

10.6 High-speed measurement ................................................................................. 97

10.7 Demand ..................................................................................................................... 99

10.7.1 Present demand ........................................................................................... 9910.7.2 Predicted demand .................................................................................... 10010.7.3 Maximum values per demand period ............................................... 10210.7.4 Minimum values per demand period ................................................ 10410.7.5 Peak demand of this month .................................................................. 10610.7.6 Peak demand last month ....................................................................... 10610.7.7 Peak demand data structure ................................................................. 107

10.8 Max/Min log .......................................................................................................... 108

10.8.1 Maximum values of this month .......................................................... 10810.8.2 Min log of this month .............................................................................. 11010.8.3 Max log of last month .............................................................................. 11210.8.4 Min log last month .................................................................................... 11410.8.5 Max/Min log data structure ................................................................... 115

10.9 Setup parameters ............................................................................................... 116

10.10 Clear/reset register ............................................................................................. 121

10.11 Setpoint setup parameters ............................................................................. 123

10.11.1 Structure of the setpoint register (standard) .................................. 12410.11.2 Setpoint register structure (high speed) ........................................... 124

10.12 Logic module ....................................................................................................... 127

10.12.1 Logic module registers ............................................................................ 12710.12.2 Logic module data structure ................................................................. 127

10.13 Data recorder (DR) .............................................................................................. 129

10.13.1 Data recorder register .............................................................................. 12910.13.2 High-speed data recorder register structure .................................. 13010.13.3 Standard data recorder register structure ....................................... 132

10.14 Waveform recording (WFR) ............................................................................. 133

6 PEM575_D00016_01_M_XXEN/05.2016

Page 7: PEM575 - Bender

Table of Contents

10.15 Energy log ............................................................................................................. 136

10.16 PQ log ..................................................................................................................... 138

10.17 Event log (SOE log) ............................................................................................. 139

10.17.1 Energy log register .................................................................................... 14010.17.2 Event log data structure ......................................................................... 14010.17.3 Event classification (SOE log) ............................................................... 141

10.18 Time setting .......................................................................................................... 151

10.19 DOx output control ........................................................................................... 152

10.20 Universal measuring device information ................................................... 153

11. Technical data .................................................................................. 155

11.1 Standards and certifications ........................................................................... 157

11.2 Ordering information ........................................................................................ 157

INDEX ......................................................................................................... 159

7 PEM575_D00016_01_M_XXEN/05.2016

Page 8: PEM575 - Bender
Page 9: PEM575 - Bender

1. Making effective use of this document

1.1 How to use this manualThis manual is aimed at qualified personnel in electrical engineering and communications technology, installers and users of the product and must be kept ready for referencing in the immediate vicinity of the device. To make it easier for you to understand and revisit certain sections of text and instructions in the manual, we have used symbols to identify important instructions and information. The meaning of these symbols is explained below:

Although great care has been taken in the drafting of this operating manual, it may nevertheless contain errors and mistakes. Bender cannot accept any liability for injury to persons or damage to property resulting from errors or mistakes in this manual.Each of the registered trademarks which appears in this document remains the property of its owner.

The signal word indicates that there is a high risk of danger,, that willresult in death or serious injury if not avoided.

This signal word indicates a medium risk of danger that can lead todeath or serious injury if not avoided.

This signal word indicates a low level risk that can result in minor ormoderate injury or damage to property if not avoided.

This symbol denotes information intended to assist the user in makingoptimum use of the product.

DANGER

WARNING

CAUTION

9PEM575_D00016_01_M_XXEN/05.2016

Page 10: PEM575 - Bender

Making effective use of this document

1.2 Technical support: Service and supportFor commissioning and troubleshooting Bender offers you:

First level supportTechnical support by phone or e-mail for all Bender products All questions about customer applications Commissioning Troubleshooting

Phone: +49 6401 807-760*Fax: +49 6401 807-259only available in Germany: 0700BenderHelp (Tel. and Fax)E-mail: [email protected]

Repair serviceRepair, calibration, update and replacement service for all Bender products Repair, calibration, testing and analysing Bender products Hardware and software update for Bender devices Delivery of replacement devices for faulty or incorrectly delivered Bender devices Extended warranty for Bender devices with in-house repair service resp. replace-

ment devices at no extra cost

Phone: +49 6401 807-780** (technical issues) +49 6401 807-784**, -785** (commercial matters)

Fax: +49 6401 807-789E-mail: [email protected]

Please send the devices for repair to the following address:

Bender GmbH, Repair Service Londorfer Strasse 65 35305 Gruenberg, Germany

10 PEM575_D00016_01_M_XXEN/05.2016

Page 11: PEM575 - Bender

Making effective use of this document

Field serviceOn-site service for all Bender products Commissioning, parameter setting, maintenance, trouble shooting for Bender

products Analysis of the electrical installation in the building (power quality test, EMC test,

thermography) Practical training courses for customers

Phone: +49 6401 807-752**, -762 **(technical issues) +49 6401 807-753** (commercial matters)

Fax: +49 6401 807-759E-mail: [email protected]: www.bender.de.

*Available from 7.00 a.m. to 8.00 p.m. on 365 days of the year (CET/UTC+1)**Mo-Thu 7.00 a.m. - 8.00 p.m., Fr 7.00 a.m. - 13.00 p.m.

1.3 WorkshopsBender would be happy to provide training in respect of the use of the universal measuring device. Current dates of training courses and workshops can be found on the Internet at www.bender.de -> Know-how -> Seminars.

1.4 Delivery conditions, guarantee, warranty and liabilityThe conditions of sale and delivery set out by Bender apply. For software products, the "Softwareklausel zur Überlassung von Standard- Software als Teil von Lieferungen, Ergänzung und Änderung der Allgemeinen Lieferbedingungen für Erzeugnisse und Leistungen der Elektroindustrie" (software clause in respect of the licensing of standard software as part of deliveries, modifications and changes to general delivery conditions for products and services in the electrical industry) set out by the ZVEI (Zentralverband Elektrotechnik- und Elektronikindustrie e.V., (German Electrical and Electronic Manufacturers' Association) also applies.Conditions of sale and delivery can be obtained from Bender in printed or electronic format.

11PEM575_D00016_01_M_XXEN/05.2016

Page 12: PEM575 - Bender

Making effective use of this document

12 PEM575_D00016_01_M_XXEN/05.2016

Page 13: PEM575 - Bender

2. Safety

2.1 Intended useThe universal measuring device PEM575 is suitable for the analysis of energy and power monitoring of the power supply quality data recording for energy management. As a compact device for front panel mounting, it is a replacement for analogue indicating instruments. Das PEM575 is suitable for 2, 3 and 4-wire systems and can be used in TN, TT and IT systems. The current measurement inputs of the PEM are connected via external …/1 A or…./5 A measuring current transformers. In principle, measurements in medium and high voltage systems are carried out via measurement transformers and voltage transformers.Use for the intended purpose also includes: Device-specific settings according to local equipment and operating conditions. The observation of all information in the operating manual.

2.2 Qualified personnel

Electrically skilled persons are those who have the relevant education, knowledge and experience, as well as knowledge of the relevant safety standards and who are able to perceive risks and to avoid hazards which electricity can create when work activities are carried out on electrical installations. The electrically skilled person is specially trained for carrying out work activities in his specific working environment and has a thorough knowledge of the relevant standards and regulations. In Germany, an electrically skilled person must meet the requirements of the accident prevention regulation BGV A3. In other countries the applicable regulations have to be observed and followed.

Only electrically skilled persons are authorised to install andcommission this device.

13PEM575_D00016_01_M_XXEN/05.2016

Page 14: PEM575 - Bender

Safety

2.3 General safety instructionsBender devices are designed and built in accordance with the state of the art and accepted rules in respect of technical safety. However, the use of such devices may introduce risks to the life and limb of the user or third parties and/or result in damage to Bender equipment or other property.

Only use Bender equipment:– as intended– in perfect working order– in compliance with the accident prevention regulations and guidelines appli-

cable at the location of use Eliminate all faults immediately which may endanger safety. Do not make any unauthorised changes and only use replacement parts and opti-

onal accessories purchased from or recommended by the manufacturer of the equipment. Failure to observe this requirement can result in fire, electric shock and injury.

Information plates must always be clearly legible. Replace damaged or illegible plates immediately.

If the device is overloaded by overvoltage or a short-circuit current load, it must be checked and replaced if necessary.

If the device is being used in a location outside the Federal Republic of Germany, the applicable local standards and regulations must be complied with. European standard EN 50110 can be used as a guide.

Danger of electric shock!Touching live parts will cause danger of electric shock with fatalconsequences. All work activities on electrical installations as well as installationactivities, commissioning activities and work activities with the device inoperation may only be carried out by electrically skilled persons!

DANGER

14 PEM575_D00016_01_M_XXEN/05.2016

Page 15: PEM575 - Bender

3. Device description

3.1 Area of applicationFor humans, electric current is not immediately visible. Universal measuring devices for monitoring electrical parameters are used wherever energy consumption, performance measurements or the quality of the supply voltage are to be made visible.The PEM575 is suitable for monitoring power generation systems (PV systems, CHPs, hydro power and wind power

plants) energy-intensive equipment and parts of installation sensitive equipment

3.2 Device featuresThe universal measuring device PEM575 for power quality and energy management is characterised by the following features: Accuracy class in accordance withIEC 62053-22: 0.2 S Password protection 16 programmable setpoints LED pulse outputs for active and reactive energy Modbus RTU communication via RS-485 interface 6 digital inputs 3 digital outputs Power and current demands for particular time frames Peak demands with timestamps Individual, current/voltage harmonics up to the 63rd harmonic Max and Min values High-resolution waveform recording (12.8 kHz) Data recorder Event log: 512 events, setup changes, setpoint alarming, DI status changes, DO

switching operations Sag/swell detection Detection of transient events Communication:

15PEM575_D00016_01_M_XXEN/05.2016

Page 16: PEM575 - Bender

Device description

– Galvanically isolated RS-485 interface (1,200 … 19,200 bit/s)– Modbus/RTU protocol– Modbus/TCP (10/100 Mbit/s)

Measured quantities– Phase voltages UL1, UL2, UL3 in V– Line-to-line voltages UL1L2, UL2L3, UL3L1 in V– Phase currents I1, I2, I3 in A– Neutral current (calculated) I0 in A – Neutral current (measured) I4 in A – Frequency f in Hz– Phase angle for U and I in °– Power per phase conductor P in kW, Q in kvar, S in kVA– Total power P in kW, Q in kvar, S in kVA– Displacement factor cos (φ)– Power factor λ– Active and reactive energy import in kWh, kvarh– Active and reactive energy export in kWh, kvarh– Voltage unbalance in %– Current unbalance in %– Harmonic distortion

(THD, TOHD, TEHD) for U and I– K-factor for I

3.3 Versions

Type Nominal system voltage 3(N)AC Current input

PEM575 230/400 V 5 A

PEM575-251 230/400 V 1 A

PEM575-455 400/690 V 5 A

PEM575-451 400/690 V 1 A

PEM575-155 69/120 V 5 A

PEM575-151 69/120 V 1 A

16 PEM575_D00016_01_M_XXEN/05.2016

Page 17: PEM575 - Bender

Device description

3.4 Application example

Fig. 3.1: Application example

3.5 Description of functionThe digital universal measuring device PEM575 is suited for measuring and displaying electrical quantities of a public electricity network. The PEM575 is able to perform current, voltage, energy consumption and performance measurements as well as displaying individual harmonic components of current and voltage for assessment of the voltage and current quality.

Modbus TCP

Ethernet

BMS 1…12

ModbusRTU

Datenbank

LPEN

PE

LNPE

U

I

Modbus TCPModbus RTU

PAS

PEM7xx

U

I

NSHV

UV1

1…12

RCMSUV2

U

I

U

I

U

I

RCMS

Modbus TCPModbus RTU

Modbus TCP

PEM5xx PEM5xx

Modbus RTU

PEM3xx

PEM7xx

CP700

3

U

I

Modbus RTU

PEM3xx

3

17PEM575_D00016_01_M_XXEN/05.2016

Page 18: PEM575 - Bender

Device description

The accuracy of the active energy metering corresponds to class 0.2 S in compliance with the DIN EN 62053-22 (VDE 0418 Part 3-22):2003-11.

The large display of the panel mounting device makes the relevant measured quantities easily legible and enables fast configuration. In addition, the RS-485 interface allows a central evaluation and processing of data. Switching operations can be monitored or initiated via the digital inputs and outputs (Example: Switching off uncritical loads if the peak load limit value is exceeded).

The universal measuring device PEM575 provides the following functions: Provision of energy consumption data for a well-thought-out energy manage-

ment Allocation of energy costs Power quality monitoring for cost reduction and increased plant availability High-resolution waveform recording allow analysis of power quality phenomena

3.6 Front view and rear viewThe connecting terminals are located at the rear of the device.

Fig. 3.2: Front view (left) and rear view (right) PEM575

kvarhkWhPEM575

LINETRAXX®

V/I POWER HARMONICS ENERGY

OK

D+

DIC DI1 DI2 DI3 DI4 DI5 DI6A1 A2

Power

RS-485ETHD- SH

• l11

• l41

l12

l42SH

l22 l32

L1 L2 L3 N

• l21 • l31

DO34 DO33 DO24 DO23 DO14 DO13

18 PEM575_D00016_01_M_XXEN/05.2016

Page 19: PEM575 - Bender

4. Installation and connection

4.1 Project planningFor any questions associated with project planning, please contact Bender:Internet: www.bender.deTel.: +49-6401-807-0

4.2 Safety instructionsOnly electrically skilled persons are allowed to connect and commission the device.Such persons must have read this manual and understood all instructions relating to safety.

4.3 Installing the device

4.3.1 Dimension diagrams

Fig. 4.1: Dimension diagram PEM575 (front view)

Danger of electric shock! Follow the basic safety rules when working with electricity.Consider the data on the rated voltage and supply voltage as specifiedin the technical data!

DANGER

96

106

88

96

91

19PEM575_D00016_01_M_XXEN/05.2016

Page 20: PEM575 - Bender

Installation and connection

Fig. 4.2: Dimension diagram PEM575 (side view)

Fig. 4.3: Dimension diagram PEM575 (panel cutout)

4.3.2 Front panel mountingA front panel cutout of 92 mm x 92 mm is necessary for installation.

1. Insert the device through the cutout in the front panel.

2. Insert the two installation clips into the equipment rail from behind.

3. Push the clips towards the front panel and tighten the associated screws by hand.

4. Check the device to ensure that it is firmly installed in the front panel.

The device is installed.

18 88

91

18

96

92

92

20 PEM575_D00016_01_M_XXEN/05.2016

Page 21: PEM575 - Bender

Installation and connection

4.4 Connection of the device

4.4.1 Safety information

4.4.2 Back-up fusesBack-up fuse supply voltage: 6 AShort-circuit protection Protect the measuring inputs according to the requirements of the standards. (Recommendation: 2 A). A suitable isolation means must be provided. For details refer to the operating manuals of the measuring current transformers currently used.

4.4.3 Connection of measuring current transformersWhen connecting the measuring current transformers it is important to consider the requirements of DIN VDE 0100-557 (VDE 0100-557) – Low voltage installations - Part 5: Selection and erection of electrical equipment - Section 557: Auxiliary circuits.

4.5 Instructions for connection Connect the PEM575 to the supply voltage (terminals A1 and A2 resp. +/-). Con-

nect terminal " " to the protective conductor. Power protection by a 6 A fuse, quick response. If being supplied from an IT sys-

tem, both lines have to be protected by a fuse. Connection to the RS-485 bus is made via the terminals D+, D- and SH. Up to 32

devices can be connected to the bus. The maximum cable length for the bus con-nection of all devices is 1200 m.

Danger of electric shock! Follow the basic safety rules when working with electricity.Consider the data on the rated voltage and supply voltage as specifiedin the technical data!

If the supply voltage Us is supplied by an IT system, both lines are to beprotected.

DANGER

21PEM575_D00016_01_M_XXEN/05.2016

Page 22: PEM575 - Bender

Installation and connection

4.6 Wiring diagramConnect the device according the wiring diagram. The connections are located at the rear of the device.

Fig. 4.4: Wiring diagram

Legend to wiring diagram

1 Connection RS-485 bus

2Supply voltage. Power protection by a 6 A fuse, quick response. If being supplied from an IT system, both lines have to be protected by a fuse.

3 Digital inputs

4 Digital outputs (N/O contacts)

5Measuring voltage inputs: The measuring leads should be protected with appropriate fuses.

6 Connection to the system to be monitored

7 Connection Modbus TCP

D+

DIC DI1 DI2 DI3 DI4 DI5 DI6A1 A2

Power

RS-485ETHD- SH

• l11

• l41

l12

l42SH

l22 l32

L1 L2 L3 N

• l21 • l31

DO34 DO33 DO24 DO23 DO14 DO13

L1

I11I12

I21I22

I31I32

I41I42

L2L3N

DI1 DICDI5 DI6DI2 DI3 DI4

US

DO13 DO14

DO23 DO24

DO33 DO34

L1 L2 L3 N

2

3

4

7

5

6

1

22 PEM575_D00016_01_M_XXEN/05.2016

Page 23: PEM575 - Bender

Installation and connection

4.7 Connection diagram voltage inputs

4.7.1 Three-phase 4-wire system (TN, TT, IT system)The universal measuring device PEM575 can be used in three-phase-4-wire systems, independent of the type of distribution system (TN, TT, IT system).

Fig. 4.5: Connection diagram three-phase 4-wire system(e.g. TN-S system)

L1 L2 L3 N

PEM

Ri

AC 230/400 V

AC 400/690 V(PEM575-451/-455)

23PEM575_D00016_01_M_XXEN/05.2016

Page 24: PEM575 - Bender

Installation and connection

4.7.2 Three-phase 3-wire systemThe universal measuring device PEM575 can be used in three-phase-3-wire systems. The line voltage must not exceed AC 400 V.

Fig. 4.6: Connection diagram three-phase-3-wire system

When used in 3-wire systems, the connection type (TYPE) has to be set toDELTA (refer to page 43). For this purpose, the measuring inputs L2 andN are to be bridged.

L1 L2 L3

PEM

Ri

AC 400 V

N

AC 690 V(PEM575-451/-455)

24 PEM575_D00016_01_M_XXEN/05.2016

Page 25: PEM575 - Bender

Installation and connection

4.7.3 Connection via voltage transformersThe coupling via voltage transformers allows the use of the measuring device in medium and high voltage systems. The transformation ratio can be adjusted in the PEM575 (1…10000).

Fig. 4.7: Connection diagram 3-wire system via voltage transformers

4.8 Digital inputs The universal measuring device PEM575 provides 6 digital inputs. The inputs are supplied by a galvanically isolated DC 24 V voltage. An external circuit providing at least a current of Imin > 2.4 mA is required for triggering the inputs.

L1 L2 L3 N

PEM

Ri

LV / MV / HV

DI1 DICDI5 DI6DI2 DI3 DI4

25PEM575_D00016_01_M_XXEN/05.2016

Page 26: PEM575 - Bender

Installation and connection

4.9 Digital outputsThe universal measuring device PEM575 features 3 configurable outputs (N/O contact).

4.10 Modbus TCP (connector pin assignment)

Rated operational voltage

AC 230 V DC 24 V AC 110 V DC 12 V

Ratedoperational current

5 A 5 A 6 A 5 A

RJ45 Pin assignment

1 Transmit Data +

2 Transmit Data –

3 Receive Data +

4, 5, 7, 8 not used

6 Receive Data –

DO13 DO14

DO23 DO24

DO33 DO34

1 2 3 4 5 6 7 8

26 PEM575_D00016_01_M_XXEN/05.2016

Page 27: PEM575 - Bender

5. Commissioning

5.1 Check proper connectionObserve the relevant standards and regulations that have to be observed for installation and connection as well as the operating manual of the respective device.

5.2 Before switching onBefore switching on think carefully about these questions:

1. Does the connected supply voltage correspond to the nameplates' informa-tion?

2. Are you sure that the nominal insulation voltage of the measuring current transformer has not been exceeded?

3. Does the measuring current transformer's maximum current correspond to the nameplate information of the connected device?

5.3 Switching onAfter switching on, proceed as follows:

1. Connect the supply voltage.

2. Set the bus address/IP address.

3. Set the CT transformation ratio (for each channel).

4. Change the measuring current transformer's counting direction, if required.

5. Set the nominal voltage (line-to-line voltage ULL).

6. Select wye connection or delta connection.

5.4 SystemThe universal measuring device PEM575 can be programmed and queried via Modbus RTU. For details refer to „chapter 10. Modbus Register Map“ or the Internet www.modbus.org.

27PEM575_D00016_01_M_XXEN/05.2016

Page 28: PEM575 - Bender

Commissioning

In addition, it is possible to integrate the device into Bender's own BMS (Bender measuring device interface) bus protocol via additional communication modules. In this way, communication with (already existing) Bender devices for device parameterisation and visualisation of measured values and alarms can be achieved.

Help and examples of system integration can be found on the Bender homepage www.bender.de or you can contact our Bender Service for personal advice (see „chapter 1.2 Technical support: Service and support“).

28 PEM575_D00016_01_M_XXEN/05.2016

Page 29: PEM575 - Bender

6. Operation

6.1 Getting to know the operating elements

Fig. 6.1: Operating elements

Legend to operating elements

No. Element Description1 LED kWh

Pulse output, see page 342 LED kvarh

3 LC display

4"V/I" button

Display mean values and total values (current, voltage)in the menu: in case of numerical values: move the cursor one to the left by one position

5"POWER" button

Display power-related measured quantitiesin the menu: go up one entryin case of numerical values: increments a value

6"HARMONICS" button

Display harmonicsin the menu: go back to the last parameter in the menuin case of numerical values: decrements a value

7"ENERGY" buttonOK

Press > 3 s: toggles between setup and standard display modeDisplay measured values: active and reactive energy import/active and reactive energy export (line 5)in the menu: select parameters for modificationsave the new setting

kvarhkWhPEM575

LINETRAXX®

V/I POWER HARMONICS ENERGY

OK

1 2

3

4 5 6 7

29PEM575_D00016_01_M_XXEN/05.2016

Page 30: PEM575 - Bender

Operation

6.2 LCD testing Pressing both the "POWER" and "HARMONICS" buttons simultaneously for > 2 seconds enters the LCD testing mode.

During testing, all LCD segments are illuminated for one second and then turned off for 1 second. This cycle will be repeated 3 times. After completion of the test run, the device automatically returns to its normal display mode.

Fig. 6.2: Display during an LCD test

6.3 Getting to know standard display areasThe display can generally be divided into five areas.

30 PEM575_D00016_01_M_XXEN/05.2016

Page 31: PEM575 - Bender

Operation

Legend to standard display areas

Fig. 6.3: Display areas

No. Description

1 Displays the indicators for DI status and DO status

2 Measured values

3 Harmonic Distortion HD, unbalance (unb), quadrant, measurement units

4Displays energy information such as active energy (import, export, net energy and total energy in kWh), reactive energy (import, export, energy net amount and total energy in kvar), apparent energy (Sges in kVAh)

5Shows parameters for voltage, current, fundamental, power, total harmonic distor-tions THD, TOHD, TEHD (2nd…3st harmonic), k-factor, unbalance (unb), phase angle for voltages and currents, demands

12

3

4

5

31PEM575_D00016_01_M_XXEN/05.2016

Page 32: PEM575 - Bender

Operation

Description of standard display indications (ranges 1, 3 and 4)

Fig. 6.4: Standard display indications

6.4 Power and current demands (demand display)The demands are indicated on the display according to the following scheme:

Area Segments Symbol description

1 DI open DI closed

DO open DO closed

3

V, kV, A, %, HzMeasurement units for U, I, THD, f

kW, MW, kvar, kVA, MVAMeasurement units for P, Q, S

Current value expressed as a percentage

inductive, capacitive

C1Status communica-tion interface

Alarm symbol Quadrant

4

IMP kWhActive energy import

EXP kWhActive energy export

NET kWhActive energy net amount

TOT kWhTotal active energy

IMP kvarhReactive energy import

EXP kvarhReactive energy export

NET kvarhReactive energy net amount

TOT kvarhTotal reactive energy kVAh

Apparent energy

Q1

Q4Q3

Q2

32 PEM575_D00016_01_M_XXEN/05.2016

Page 33: PEM575 - Bender

Operation

Fig. 6.5: Display: peak demand

Legend to demand display

No. Display

1 Peak demand value

2 Peak demand timestamp (date): JJJJ.MM.TT

3 Peak demand timestamp (time): HH:MM:SS

4

Demand displays: A: I1b: I2C: I3P: Active energy demand P q: Reactive energy demand Q S: Apparent energy demandDMD: DemandMAX MaximumTM: this monthLM: last month

1

2

3

4

33PEM575_D00016_01_M_XXEN/05.2016

Page 34: PEM575 - Bender

Operation

6.5 LED indicationThe universal measuring device features two red LEDs on its front panel: kWh and kvarh.The two LED indicators are used for the indication of kWh and kvar, if the EN PULSE function is enabled. The setting can be carried out in the setup menu using the buttons on the front or via the communications interface..The LEDs flash each time a certain amount of energy is reached (1 kWh resp.1 kvarh). The amount of energy displayed corresponds to the amount of energy measured by the measuring device. In order to determine the actual amount of energy, the flashing frequency can be calculated from the CT ratio and the pulse constant.

6.6 Standard displayThe universal measuring device automatically shows the default display screen, if there is no button pressed for 3 minutes in the Setup mode.

Fig. 6.6: Standard display

6.7 Data displayThere are four buttons on the display to view measuring data: "V/I", "POWER" , "HARMONICS" and "ENERGY". The following tables illustrate how to retrieve individual values. PEM575 also provides the fundamental components (related to f(0)) for the measured quantities listed in the following table (in display shown as "d").

First line

Second line

Third line

Fourth line

Fifth line

Right columnLeft column

34 PEM575_D00016_01_M_XXEN/05.2016

Page 35: PEM575 - Bender

Operation

6.7.1 "V/I" buttonLeft

columnRight

column First line Second line Third line Fourth line

TOT

VAW

Ø U Ø I Pges Power factor λges

U123

AVG

V

*UL1 *UL2 *UL3 *Ø ULN

U1-22-33-1AVG

V

UL1L2 UL2L3 UL3L1 Ø ULL

I123

AVG

A

I1 I2 I3 Ø I

I4 A I4

I0 ANeutral current I0 (calculated)

d 1 23

AVG

V UL1(f0) UL2 (f0) UL3 (f0) Ø ULN (f0)

d 1 23

AVG

A I1 (f0) I2 (f0) I3 (f0) Ø I (f0)

F Hz fU

unb% Unbalance U

Iunb

% Unbalance I

U1PA 2

3Phase angle UL1 Phase angle UL2 Phase angle UL3

I1PA 2

3Phase angle I1 Phase angle I2 Phase angle I3

35PEM575_D00016_01_M_XXEN/05.2016

Page 36: PEM575 - Bender

Operation

Tab. 6.1: Display screens via the "V/I" button

Note table 6.1: * When the wiring mode is "DELTA", the display will be bypassed and does not appear.

I1DMD 2

3A Demand I1 Demand I2 Demand I3 Ø Demand I

DMD I4 A Demand I4A

DMD MAX TM

APeak demand I1

this monthJJJJ.MM.TT hh:mm:ss

bDMD MAX TM

APeak demand I2

this month JJJJ.MM.TT hh:mm:ss

CDMD MAX TM

APeak demand I3

this monthJJJJ.MM.TT hh:mm:ss

ADMD MAX LM

APeak demand I1

last monthJJJJ.MM.TT hh:mm:ss

bDMD MAX LM

APeak demand I2

last monthJJJJ.MM.TT hh:mm:ss

CDMD MAX LM

APeak demand I3

last monthJJJJ.MM.TT hh:mm:ss

Left column

Right column First line Second line Third line Fourth line

36 PEM575_D00016_01_M_XXEN/05.2016

Page 37: PEM575 - Bender

Operation

6.7.2 "POWER"button

Left column

Right column First line Second line Third line Fourth line

* P123

TOT

W PL1* PL2

* PL3* Pges

*q123

TOT

var QL1* QL2

* QL3* Qges

*S123

TOT

VA SL1* SL2

* SL3* Sges

*PF123

TOT

λL1* λL2

* λL3* λges

d123

TOT

W PL1 (f0) PL2 (f0) PL3 (f0) Pges (f0)

d123

TOT

var QL1 (f0) QL2 (f0) QL3 (f0) Qges (f0)

d123

TOT

VA SL1 (f0) SL2 (f0) SL3 (f0) Sges (f0)

*dPF123

TOT

Displacement factor cos (φ)L1 f(0)

*Displacement

factor cos (φ)L2 f(0)*

Displacement factor cos (φ)L3 f(0)

*

Displace-ment factor cos (φ) f(0)

TOTW

varVA

Pges Qges Sges λges

37PEM575_D00016_01_M_XXEN/05.2016

Page 38: PEM575 - Bender

Operation

Tab. 6.2: Display possibilities via the "POWER" button

Note table 6.2: * When the wiring mode is "DELTA", the display will be bypassed and does not appear.

dTOT

WvarVA

Pges (f0) Qges (f0) Sges (f0) λges (f0)

DMDTOT

WvarVA

Demand Pges Demand Qges Demand SgesDemand

λges

PDMDTOT

WvarVA

Predicted demand Pges

Predicted demand Qges

Predicted demand Sges

Predicted demand

λges

PDMDMAXTM

kWPeak demand P

this monthYYYY.MM.DD hh:mm:ss

qDMDMAXTM

kvarPeak demand Q

this monthYYYY.MM.DD hh:mm:ss

SDMDMAXTM

kVAPeak demand S

this monthYYYY.MM.DD hh:mm:ss

PDMDMAXLM

kWPeak demand P

last monthYYYY.MM.DD hh:mm:ss

QDMDMAXLM

kvarPeak demand Q

last monthYYYY.MM.DD hh:mm:ss

SDMDMAXLM

kVAPeak demand S

last monthYYYY.MM.DD hh:mm:ss

Left column

Right column First line Second line Third line Fourth line

38 PEM575_D00016_01_M_XXEN/05.2016

Page 39: PEM575 - Bender

Operation

6.7.3 "HARMONICS" button

Left column

Right column First line Second line Third line Fourth line

THD U123

AVG

% THDUL1 THDUL2 THDUL3 Ø THDULN

THD I123

AVG

% THDI1 THDI2 THDI3 Ø THDI

123

k-factor I1 k-factor I2 k-factor I3

UTHDEven

% TEHDUL1 TEHDUL2 TEHDUL3 Ø TEHDULN

ITHDEven

% TEHDI1 TEHDI2 TEHDI3 Ø TEHDI

UTHDODD

% TOHDUL1 TOHDUL2 TOHDUL3 Ø TOHDULN

ITHDODD

% TOHDI1 TOHDI2 TOHDI3 Ø TOHDI

HD2 U1

23

AVG

% 2nd 2nd 2nd Ø 2nd

HD2 I123

AVG

% 2nd 2nd 2nd harmonic I3 Ø 2nd harmonic I

HD3 U123

AVG

% 3rd 3rd 3rd Ø 3rd

39PEM575_D00016_01_M_XXEN/05.2016

Page 40: PEM575 - Bender

Operation

Tab. 6.3: Display screens via the "HARMONICS" button

Note table 6.3: * The harmonics 32…63 can only be queried via the communication interface.

6.7.4 "ENERGY" buttonThe "Energy" button switches through the displays of the fifth line:

Tab. 6.4: Display screens via the "ENERGY" button

HD31 U1

23

AVG

% 31st 31st 31st Ø 31st

*HD31 I123

AVG

% 31st 31st 31st harmonic I3 Ø 31st harmonic I

Left column Right column Value

IMP kWh Active energy import

EXP kWh Active energy export

NET kWh Active energy net amount

TOT kWh Total active energy

IMP kvarh Reactive energy import

EXP kvarh Reactive energy export

NET kvarh Reactive energy net amount

TOT kvarh Total reactive energy

S kVAh Apparent energy

Left column

Right column First line Second line Third line Fourth line

40 PEM575_D00016_01_M_XXEN/05.2016

Page 41: PEM575 - Bender

Operation

6.8 Setup configuration via the front panelPressing the "ENERGY" button for more than 3 seconds enters the Setup configuration mode. Upon completion, pressing the "ENERGY" button for more than 3 seconds returns to the data display mode.

6.8.1 Setup: Function of buttonsThe meanings of the buttons in the Setup mode are indicated below each button:

"V / I": arrow button " " moves the cursor to the left by one position if the parameter being changed is a numerical value

"POWER": arrow button " " advances to the next parameter in the menu or increments a numerical value

"HARMONICS": arrow button " " goes back to the last parameter in the menu or decrements a numerical value

"ENERGY": OK to confirm the value entered

A correct password must be entered before parameter changes areallowe (factory default password is 0).

41PEM575_D00016_01_M_XXEN/05.2016

Page 42: PEM575 - Bender

Operation

6.8.2 Setup: Overview diagram menuThe following diagram will help you to familiarise yourself with the menu.

Fig. 6.7: Setup: Overview of setting options

OK

OKOK

OKOK

OKOK

OKOK

OKOK

OKOK

OKOK

OKOK

OKOK

OKOK

PROGRAMMING

Enter password PASWORD

Change password PAS SET

Set date DAT

Presetting

demands DMD SET

Presetting

energy values ENGY SET

Set time CLK

Trigger mode

digit. output DO SET

Info INFO

Device button

System settings SYS SET

Clear memory CLR SET

Communications

interface COM1 SET

Presetting

energy pulsing PULS SET

> 3 sENERGY/OK

Activate energy pulsing EN PULSE

Enter new password NEW PAS

Select connection type TYPE

Voltage transformer transf. ratio PT

Set baud rate BAUD

CT transformation ratio CT

Set pulse constant EN CONST

Clear energy values CLR ENGY

Clear max/min values CLR MXMN

Clear peak demand CLR PDMD

Reactive energy import IMP kvarh

Active energy export EXP kWh

Active energy import IMP kWh

Reactive energy export EXP kvarh

Apparent energy S kVAh

Serial number

Date update UPDAT

Protocol version PROVER

Software version SW-VER

Set address ID

Parity bit CONFIG

kVA calculation method KVA SET

Neutral conductor current I4

Sliding Windows NUM

Measuring period PERIOD

DO1 control DO1 Control

Change polarity I3 I3 REV

Change polarity I2 I2 REV

Change polarity I1 I1 REV

DO2 control DO2 Control

Clear pulse counter CLR DIC

Clear event memory CLR SOE

Duration of display lighting BLTO SET

Power factor rule PF SET

Calculation method THD HD SET

Nominal system voltage V NOM

Nominal frequency Hz NOM

Protocol PRO

Ethernet parameter ETH SET

Set IP address (LoWord) IPL

IP address (HiWord) IPH

Subnet mask (HiWord) SMH

Subnet mask (LoWord) SML

Gateway address (HiWord) GWH

Gateway address (LoWord) GWL

Synchronisation mode MODE

Prognosis answer SENS

DO3 control DO3 Control

Clear PQ memory CLR PQ

42 PEM575_D00016_01_M_XXEN/05.2016

Page 43: PEM575 - Bender

Operation

6.9 Setup: adjustment possibilitiesThe table illustrates the display screens, their meaning and the adjustment possibilities.

Display screenLevel 1

Level 2Parameters Description Adjustment

possibilitiesDefaultsetting

PROGRAMMING Setup mode

PASWORD Password Enter password / 0

PAS SET Change password? YES/NO NO

NEW PAS New password Enter new password 0000…9999 0

SYS SET System settings YES/NO NO

TYPE Wiring mode Select wiring modeWYE/DELTA/DEMO

WYE

PTVoltage transfor-mer

Select voltage transfor-mer transformation ratio

1…10,000 1

CTMeasuring current transformers

Select CT transformation ratio

1…30,000 (1 A)1…6,000 (5 A)

1

I4 Neutral currentSelect CT transformation ratio for I4

1…10,000 1

PF SET Power factor rule Power factor rule* IEC/IEEE/-IEEE IEC

KVA SET S calculation method ** V/S V

HD SET Harmonic distortion calculation method *** FUND/RMS FUND

V NOM Nominal voltage Unom (equals ULL) 100…700 (V) 100

Hz NOM Nominal frequency fnom 50/60 (Hz) 50

I1 REV I1 CTReverse phase I1 CT polarity

YES/NO NO

43PEM575_D00016_01_M_XXEN/05.2016

Page 44: PEM575 - Bender

Operation

I2 REV I2 CTReverse phase I2 CT polarity

YES/NO NO

I3 REV I3 CTReverse phase I3 CT polarity

YES/NO NO

BLTO SET Display backlight Backlight timeout0…60 (minutes)

3

COM 1 SET Configure communications interface YES/NO NO

ID1Measuring device address

Set address for measuring device

1…247 100

BAUD1 Baud rate Set baud rate1200/2400/4800/9600/19200 bps

9600

CONFIG1 Parity bit Parity bit configuration8N2/8O1/8E1/8N1/8O2/8E2

8E1

PRO ProtocolMODBUS/EGATE

Modbus

ETH SET Configure Ethernet parameters YES/NO NO

IPH IP address (HiWord) 192.168

IPL IP address (LoWord) 8.97

SMH Subnet mask (HiWord) 255.255

SML Subnet mask (LoWord) 255.0

GWH Gateway address (HiWord) 192.168

GWL Gateway address (LoWord) 8.1

DMD SET Demand measurement on/off YES/NO NO

MODE Synchronisation mode demand SLD/SYNC SLD

Display screenLevel 1

Level 2Parameters Description Adjustment

possibilitiesDefaultsetting

44 PEM575_D00016_01_M_XXEN/05.2016

Page 45: PEM575 - Bender

Operation

PERIODSliding window interval

Set sliding window inter-val

1…99 (minutes)

15

NUMDemand cycles (sliding windows)

Set the number ofsliding windows

1…15 1

SENS Predicted demand sensitivity 70…99 70

PULS SET Set pulse output YES/NO NO

EN PULSEEnergy pulsing

Enable kWh and kvarh energy pulsing

YES/NO NO

EN CONST Pulse constantNumber of LED pulses per amount of energy

1K 1K

ENGY SET Presetting of energy values YES/NO NO

IMP kWhActive energy import

Preset active energy import

0… 999.999.999

0

EXP kWhActive energy export

Preset active energy export

0… 999.999.999

0

IMP kvarhReactive energy import

Preset reactive energy import

0… 999.999.999

0

EXP kvarhReactive energy export

Preset reactive energy export

0… 999,999,999

0

kVAh Apparent energy Preset apparent energy0… 999,999,999

0

DO SET Change trigger mode for digital outputs YES/NO NO

DO1Operating mode DO1

Set operating mode DO1NORMAL/ON/OFF

NOR-MAL

DO2Operating mode DO2

Set operating mode DO2NORMAL/ON/OFF

NOR-MAL

Display screenLevel 1

Level 2Parameters Description Adjustment

possibilitiesDefaultsetting

45PEM575_D00016_01_M_XXEN/05.2016

Page 46: PEM575 - Bender

Operation

Tab. 6.5: Setup adjustment possibilities

DO3Operating mode DO3

Set operating mode DO3NORMAL/ON/OFF

NOR-MAL

CLR SET Clear memory YES/NO NO

CLR ENGYClear energy values

Clear kWh, kvarh and kVAh YES/NO NO

CLR MXMN Clear Max and Min values of this month YES/NO NO

CLR PDMD Clear peak demand values of this month YES/NO NO

CLR DIC Clear pulse counter YES/NO NO

CLR SOE Clear event log YES/NO NO

CLR PQ Clear PQ log YES/NO NO

DAT Date Set current date YY-MM-DD /

CLK Time Set current time HH:MM:SS /

Info Device information (read only) YES/NO NO

SW-VER Software version / /

PRO VER Protocol version (50 means V5.0) / /

UPDATDate of the latest software update

yymmdd / /

Serial number device / /

Display screenLevel 1

Level 2Parameters Description Adjustment

possibilitiesDefaultsetting

46 PEM575_D00016_01_M_XXEN/05.2016

Page 47: PEM575 - Bender

Operation

rt

Explanatory notes table 6.5

*Power factor λ rules

"IEEE" is the same as "-IEEE" but with the opposite sign.

**There are two ways to calculate the apparent power S:

Choose the calculation method: V = Vector methodS = Scalar method

Quadrant 3

Power factor (-)

Active power export (-)

Reactive power export (-)

Quadrant 4

Power factor (+)

Active power import (+)

Reactive power export (-)

Quadrant 1

Power factor (+)

Active power import (+)

Reactive power import (+)

Quadrant 2

Power factor (-)

Active power export (-)

Reactive power import (+)

IEC

Reactive power import

Active power import

Quadrant 3

Power factor (-)

Active power export (-)

Reactive power export (-)

Quadrant 4

Power factor (+)

Active power import (+)

Reactive power export (-)

Quadrant 1

Power factor (-)

Active power export (+)

Reactive power import (+)

Quadrant 2

Power factor (+)

Active power export (-)

Reactive power import (+)

IEEE

Reactive power import

Active power impo

Sges = P

ges2 + Q

ges

2

Vector method V: Scalar method S:

Sges = SL1 + SL2 + SL3

47PEM575_D00016_01_M_XXEN/05.2016

Page 48: PEM575 - Bender

Operation

***There are two ways to calculate the individual harmonic distortion:

FUND"Fundamental":

THD calculation of an individual harmonic (related to fundamental U1 resp. I1)

RMS "Root Mean Square":

Distortion factor calculation of an individual harmonic (THF, related to the total value Uges resp. Iges)

THD U(k) = UkU1

x 100 %

THD I(k) = IkI1

x 100 %

Uk

Uk Σ∞

k = 1

THFU(k) = 2

x 100 %

Ik

Ik Σ∞

k = 1

THFI(k) = 2

x 100 %

48 PEM575_D00016_01_M_XXEN/05.2016

Page 49: PEM575 - Bender

Operation

6.10 Configuration example:Setting the measuring current transformer ratio to 200

Button Display text Description

OK > 3 s PROGRAMMING

PASWORD ****

OK PASWORD 0 0 flashes

OK PASWORD 0 0 = factory setting

PAS SET NO

SYS SET NO

OK SYS SET NO NO flashes

or SYS SET YES YES flashes

OK SYS SET YES

TYPE WYE Factory setting

PT 1 Factory setting

CT 1 Factory setting

OK CT 1 1 flashes (units place)

CT 0 0 flashes (units place)

CT 00 0 on the left flashes (tens place)

CT 0 0 0 on the left flashes (hundreds place)

CT 200 2 flashes

OK CT 200 CT ratio 200 set

OK > 3 s Standard display

49PEM575_D00016_01_M_XXEN/05.2016

Page 50: PEM575 - Bender

Operation

50 PEM575_D00016_01_M_XXEN/05.2016

Page 51: PEM575 - Bender

7. Application/inputs and outputs

7.1 Digital inputs (DI)The device features six digital inputs which are internally operated with DC 24 V.Digital inputs are typically used for monitoring external statuses. The real-time statuses of the digital inputs are available on the front panel LC display as well as through connected system components. Changes in external statuses are stored as events in the SOE log in 1 ms resolution. One of the digital inputs can be programmed to receive pulses for the synchronisation of the demand measurement. The setting is to be carried out via register 6021 (page 117).Digital inputs can also be used as external time synchronisation pulse (see page 84).

7.2 Digital outputs (DO)The device features three digital outputs. Digital outputs are typically used for setpoint alarming, load control or remote control applications.Examples:

1. Manually operated from the front panel (Chapter 6.8 Setup configuration via the front panel)

2. Operation via communications interface (Chapter 10.19 DOx output control).

3. Control setpoints: Control actions in response to a specific condition (Chapter 7.6 Setpoints)

4. Digital outputs triggered by logic modules(Chapter 10.12 Logic module).

5. Triggered by undervoltage or overvoltage(Chapter 9.4 Undervoltage/overvoltage setpoint (sag/swell setpoint)).

6. Triggered by transient events(Chapter 9.5 Transient events setpoint).

7. Control via digital inputs

Priority: Front panel control has a higher priority and overwrites the other applications.

51PEM575_D00016_01_M_XXEN/05.2016

Page 52: PEM575 - Bender

Application/inputs and outputs

For a general alarm, all setpoints can be programmed to control the same digital output. However, if the user intends to generate a control signal in response to a specific setpoint condition, each DO may be controlled by only one source.

7.3 Energy pulsing outputThe two LED pulse outputs are used for kWh and kvarh indication, if the function EN PULSE is enabled. Energy pulsing can be enabled from the front panel through the EN Pulse setup parameter or via the communications interface.The LEDs flash each time a certain amount of energy is reached (1 kWh resp. 1 kvarh). In order to relate the flashing frequency to the amount of energy, the transformation ratios and the pulse constant have to be considered.

7.4 Power and energy

7.4.1 Basic measurementsThe PEM575 provides the following basic measurements with a 1 second update rate: three-phase voltages three-phase currents three-phase power three-phase power factors λ Neutral current Frequency Energy import and export Voltage and current phase angles

Note: VT = voltage transformer

CT = measuring current transformer

Pulses per kWh = Pulse constant

ratio VT x ratio CT

Amount of energyper pulse Pulse constant

ratio VT x ratio CT=

52 PEM575_D00016_01_M_XXEN/05.2016

Page 53: PEM575 - Bender

Application/inputs and outputs

7.4.2 High-speed measurementsIn addition to the basic measurements, the PEM575 provides the following high-speed measurements: three-phase voltages (10 ms) three-phase currents (20 ms) three-phase power (20 ms) three-phase power factors λ (20 ms) Neutral current (20 ms)

7.4.3 Voltage and current phase anglesPhase angle analysis is used to identify the angle relationship between the voltages and currents of the three line conductors.

7.4.4 EnergyBasic energy parameters include active energy (import, export, net energy and total energy in kWh) reactive energy (import, export, net energy and total energy in kvarh) as well as

reactive energy related to the quadrants Q1…Q4 apparent energy (Sges in kVAh)The maximum value to be displayed is ± 999,999,999,99. When the maximum value is reached, the register will automatically roll over to zero. The counter value can be edited via software or through the front panel, password required.

7.5 Demand DMDThe demand is defined as an average consumption value over a fixed demand period. PEM575 supports the "Sliding windows" demand calculation; in addition to the demand period also the demand cycles, which are to be considered, are specified here. The following parameters can be set: Synchronisation mode

– SLD internally synchronised to the PEM's clock– SYNC DI externally synchronised to a digital input that has been program-

med as a demand synchronisation input (DI function = SYNC DI) Demand cycles (1…15)

53PEM575_D00016_01_M_XXEN/05.2016

Page 54: PEM575 - Bender

Application/inputs and outputs

Demand period (1…99 min)Example of a total demand period:

Demand cycles: 3Demand period: 20 minTotal demand period: 3 x 20 min = 60 min

Predicted demand sensitivity SENS (70…99)

Values are determined for present demand and predicted demand Voltages (U1, U2, U3, ØULN, UL1L2, UL2L3, UL3L1, ØULL) Currents (I1, I2, I3, Ø I, I4) Active power P (P1, P2, P3, Pges) Apparent power S (S1, S2, S3, Sges) Reactive power Q (Q1, Q2, Q3, Qges) Power factor λ (λ1, λ2, λ3, λges) Frequency Voltage unbalance Current unbalance Total harmonic distortion, voltage

(THDU1, THDU2, THDU3) Total harmonic distortion, current

(THDI1, THDI2, THDI3)

The demand period can be set using the buttons on the front panel or via the communications interface. The following options are available:1, 2, 3, 5, 10, 15, 30, 60 minutesIn addition to the demand period also the demand cycles (sliding window) between 1 and 15 are to be specified.

During the total demand period (duration multiplied by the number), the consumption resp. the imported power is measured. Then the average demand value is indicated on the display and output via the communications interface. The maximum demand value (peak demand) determined over the whole recording period will be saved and displayed. The peak demand can be reset manually. Setting possibilities: Chapter 6.9 Setup: adjustment possibilities.

54 PEM575_D00016_01_M_XXEN/05.2016

Page 55: PEM575 - Bender

Application/inputs and outputs

7.5.1 Max/Min values per demand periodThe PEM575 records the min and max values of the following measurements for each demand period three-phase voltages three-phase currents three-phase frequencies three-phase power three-phase power factors λ Voltage unbalance Current unbalance Total harmonic distortion, voltage (THDU) Total harmonic distortion, current (THDI)All recorded measuring values can be accessed via the communications interface.

7.6 SetpointsThe PEM575 features 24 user-programmable control setpoints (registers 6600…6839) which provide extensive control by allowing a user to initiate an action in response to a specific condition. The alarm symbol at the right side of the LC display is lit if there are any active setpoints.

The first 16 setpoints (1…16) are standard setpoints, the other setpoints (17…24) are high-speed setpoints. Typical setpoint applications are alarming, fault location and power quality monitoring (PQ monitoring). Setpoints can be programmed via the communications interface. The following setup parameters are provided:

1. Setpoint type: Specifies the monitoring condition (over setpoint or under setpoint) or is disabled.

2. Setpoint parameters: Specifies the parameters to be monitored; for standard setpoints all parameters are available, for high-speed setpoints only the keys 1…14 apply.

55PEM575_D00016_01_M_XXEN/05.2016

Page 56: PEM575 - Bender

Application/inputs and outputs

Setpoints

Key for setpoint Parameters Factor; Unit

1 ULN x 100; V

2 ULL x 100; V

3 I x 1000; A

4 I4 x 1000; A

5 Δ f x 100, Hz

6 Pges kW

7 Qges kvar

8 λ x 1,000

9 DI1Over setpointactive limit: DI= 1 (close)inactive limit: DI = 0 (open)

Under setpointactive limit: DI= 0 (open)inactive limit: DI = 1 (close)

10 DI2

11 DI3

12 DI4

13 DI5

14 DI6

15 Reserved

16 Demand Pges kW

17 Demand Qges kvar

18 Demand λ x 1,000

19 Predicted demand Pges kW

20 Predicted demand Qges kvar

21 Predicted demand λ x 1,000

22 THDU x 100, %

23 TOHDU x 100, %

56 PEM575_D00016_01_M_XXEN/05.2016

Page 57: PEM575 - Bender

Application/inputs and outputs

Tab. 7.1: Setpoint parameters

3. Setpoint limit (active limit): Specifies the upper limits (over setpoint) resp. lower limits (under setpoint)that the setpoint parameter must exceed for over setpoint or go below for under setpoint for the setpoint to become active (response threshold).

4. Setpoint limit (inactive limit): Specifies thelower limits (under setpoint) resp. upper limits (over setpoint) that the setpoint parameter must go below for over setpoint or exceed for under setpoint for the setpoint to become inactive, e.g. back to normal state (release threshold).

5. Response delay: Specifies the minimum period that a limit value must have been violated before an action is triggered. Each status change of a setpoint generates an event that is stored in the event log. The response value for standard setpoints can be indicated in the range of 0…9.999 seconds. The response value for high-speed setpoints can be indicated in the range of 0…9.999 cycles.

24 TEHDU x 100, %

25 THDI x 100, %

26 TOHDI x 100, %

27 TEHDI x 100, %

28 Unbalance U x 10, %

29 Unbalance I x 10, %

30 Δ U x 100, %

31 Phase sequence

Over setpointactive limit: negative phase sequenceinactive limit: positive phase sequenceUnder setpointactive limit: positive phase sequenceinactive limit: negative phase sequence

Key for setpoint Parameters Factor; Unit

57PEM575_D00016_01_M_XXEN/05.2016

Page 58: PEM575 - Bender

Application/inputs and outputs

6. Delay on release: Specifies the minimum period that the setpoint return condition must have met before returning to normal condition. Each status change generates an event which is stored in the event log. The delay on release can be indicated for standard setpoints in the range of 0…9.999 seconds. The delay on release for high-speed setpoints can be indi-cated in the range of 0…9.999 cycles.

7. Setpoint trigger: Specifies what action the setpoint will take when it becomes active. This action includes "No Trigger" and "Trigger DOx".

Tab. 7.2: Setpoint trigger

Key Action Key Action

0 - 12 DR 9

1 DO1 13 DR 10

2 DO2 14 DR 11

3 DO3 15 DR 12

4 DR 1 16 DR 13

5 DR 2 17 DR 14

6 DR 3 18 DR 15

7 DR 4 19 DR 16

8 DR 5 20 WFR1

9 DR 6 21 WFR2

10 DR 7 22 Reserved

11 DR 8

58 PEM575_D00016_01_M_XXEN/05.2016

Page 59: PEM575 - Bender

Application/inputs and outputs

7.7 Logic modulesThe PEM575 provides six programmable logic modules which perform AND, NAND, OR or NOR logical operations. Each logic module is capable of linking four different setpoint conditions with each other.

Logical expression =

{(source 1 [mode 1] source 2) [mode 2] source 3} [mode 3] source 4

The alarm symbol at the right side of the LC display appears when there are active logic modules. Logic modules are programmed via the communications interface.

Details about the applied registers and their data structure you will find on page 127.

The following setup parameters are provided:

1. Activating logic modules

2. Mode 1…3: Specifies the type of logical evaluation to be performed (AND, NAND, OR, NOR).

3. Source 1…4: Specifies the source inputs (table 10.30).

4. Trigger : Trigger 1 and Trigger 2 specify what action the logic module will take when it becomes active (table 10.31).

59PEM575_D00016_01_M_XXEN/05.2016

Page 60: PEM575 - Bender

Application/inputs and outputs

60 PEM575_D00016_01_M_XXEN/05.2016

Page 61: PEM575 - Bender

8. Logging

8.1 Peak demand logThe PEM575 stores the demand data of the last month and this month with timestamp for I1, I2, I3, Pges, Qges and Sges. All values can be accessed through the front panel buttons as well as the communications interface. Data for this month can be deleted through the front panel buttons as well as the communications interface.

8.2 Max/Min logThe PEM575 stores each new maximum and minimum value of this month and last month. Details about the applied registers and their data structure you will find on page 108.The stored values are listed in the table below.

This month Last month

Maximum values Minimum values Maximum values Minimum values

UL1 max UL1 min UL1 max UL1 min

UL2 max UL2 min UL2 max UL2 min

UL3 max UL3 min UL3 max UL3 min

Ø ULN max Ø ULN min Ø ULN max Ø ULN min

UL1L2 max UL1L2 min UL1L2 max UL1L2 min

UL2L3 max UL2L3 min UL2L3 max UL2L3 min

UL3L1 max UL3L1 min UL3L1 max UL3L1 min

Ø ULL max Ø ULL min Ø ULL max Ø ULL min

I1 max I1 min I1 max I1 min

I2 max I2 min I2 max I2 min

I3 max I3 min I3 max I3 min

Ø I max Ø I min Ø I max Ø I min

I4max I4min I4max I4min

61PEM575_D00016_01_M_XXEN/05.2016

Page 62: PEM575 - Bender

Logging

Tab. 8.1: Max/Min log for this month and last month

8.3 Data recorder (DR)PEM575 has an internal memory of 4 MB and provides 4 high speed data recorders 12 standard recorders Each of these recorders can record 16 parameters. The data recorders are programmed solely via the communications interface.

Pges max Pges min Pges max Pges min

Qges max Qges min Qges max Qges min

Sges max Sges min Sges max Sges min

λges max λges min λges max λges min

f max f min f max f min

THD UL1 max THD UL1 min THD UL1 max THD UL1 min

THD UL2 max THD UL2 min THD UL2 max THD UL2 min

THD UL3 max THD UL3 min THD UL3 max THD UL3 min

THD I1 max THD I1 min THD I1 max THD I1 min

THD I2 max THD I2 min THD I2 max THD I2 min

THD I3 max THD I3 min THD I3 max THD I3 min

(k-factor I1)max (k-factor I1)min (k-factor I1)max (k-factor I1)min

(k-factor I2)max (k-factor I2)min (k-factor I2)max (k-factor I2)min

(k-factor I3)max (k-factor I3)min (k-factor I3)max (k-factor I 3)min

max. unbalance U min. unbalance U max. unbalance U min. unbalance U

max. unbalance I min. unbalance I max. unbalance I min. unbalance I

This month Last month

Maximum values Minimum values Maximum values Minimum values

62 PEM575_D00016_01_M_XXEN/05.2016

Page 63: PEM575 - Bender

Logging

Details about the applied registers and their data structure you will find on page 129.

8.3.1 Setup parametersThe following set-up parameters are supported:

Tab. 8.2: Setup data recorder

Notes: table 8.2

1) "Recording delay":

No. Parameters Setting

1 Trigger mode0 = disabled1 = triggered by timer2 = triggered by setpoint

2 Recording mode

Standard DR: 0 = stop-when-full 1 = FIFO (first-in-first-out) (ring memory)High speed DR: 1 = stop-when-full

3 Recording depth 0…65535 (entries)

4 Recording interval

Standard DR:0…3456000 seconds (40 days)High speed DR: 0…60 cycles

5 Recording delay1) 0…43200 seconds (12 h)

6 Number of measured vari-ables

0…16

7 Parameters 1…16 (see table 8.3)

Standard DR: 0…328High speed DR: 0…28

The data recorder is only operational when the parameters 1…4 areall non-zero!

63PEM575_D00016_01_M_XXEN/05.2016

Page 64: PEM575 - Bender

Logging

In Trigger mode 1, a fixed time can be set in seconds to delay the start of the measurement (triggered by timer). Example: "300" means that the recording will take place at 5 minutes after the DR is enabled. In order to obtain evaluable results, the programmed value of the recording offset parameter should be less than that of the recording interval parameter.

For Trigger mode 2, recording delay is ignored.

For details refer to- Modbus register 7000…7383 (page 129).- Data structure high speed data recorder (page 131)- Data standard data recorder (page 132)

8.3.2 Selectable measured quantities for data recorders DR16 measured quantities per data recorder can be selected from the table below:

Key Measured quantities (data recorder) Factor/unit

0 UL1 x 100, V

1 UL2 x 100, V

2 UL3 x 100, V

3 Ø ULN x 100, V

4 UL1L2 x 100, V

5 UL2L3 x 100, V

6 UL3L1 x 100, V

7 Ø ULL x 100, V

8 I1 x 1,000, A

9 I2 x 1,000, A

10 I3 x 1,000, A

11 Ø I x 1,000, A

12 I4 (measured) x 1,000, A

13 PL1 W

14 PL2 W

15 PL3 W

16 Pges W

17 QL1 var

18 QL2 var

19 QL3 var

20 Qges var

21 SL1 VA

22 SL2 VA

64 PEM575_D00016_01_M_XXEN/05.2016

Page 65: PEM575 - Bender

Logging

23 SL3 VA

24 Sges VA

25 λL1 x 1,000

26 λL2 x 1,000

27 λL3 x 1,000

28 λges x 1,000

29 F x 100, Hz

30 Counter DI1

31 Counter DI2

32 Counter DI3

33 Counter DI4

34 Counter DI5

35 Counter DI6

36 Voltage unbalance x 1000

37 Current unbalance x 1000

38 k-factor I1 x 1039 k-factor I2 x 1040 k-factor I3 x 1041 THDUL1 x 10,00042 THDUL2 x 10,00043 THDUL3 x 10,00044 TOHDUL1 x 10,00045 TOHDUL2 x 10,00046 TOHDUL3 x 10,00047 TEHDUL1 x 10,00048 TEHDUL2 x 10,00049 TEHDUL3 x 10,00050 THDI1 x 10,00051 THDI2 x 10,00052 THDI3 x 10,00053 TOHDI1 x 10,00054 TOHDI2 x 10,000

Key Measured quantities (data recorder) Factor/unit

65PEM575_D00016_01_M_XXEN/05.2016

Page 66: PEM575 - Bender

Logging

55 TOHDI3 x 10,00056 TEHDI1 x 10,00057 TEHDI2 x 10,00058 TEHDI3 x 10,00059 UL1 2nd harmonic x 10,000

60 UL2 2nd harmonic x 10,000

61 UL3 2nd harmonic x 10,000

62 UL1 3rd harmonic x 10,000

63 UL2 3rd harmonic x 10,000

64 UL3 3rd harmonic x 10,000

65 UL1 4th harmonic x 10,000

66 UL2 4th harmonic x 10,000

67 UL3 4th harmonic x 10,000

68 UL1 5th harmonic x 10,000

69 UL2 5th harmonic x 10,000

70 UL3 5th harmonic x 10,000

71 UL1 6th harmonic x 10,000

72 UL2 6th harmonic x 10,000

73 UL3 6th harmonic x 10,000

74 UL1 7th harmonic x 10,000

75 UL2 7th harmonic x 10,000

76 UL3 7th harmonic x 10,000

77 UL1 8th harmonic x 10,000

78 UL2 8th harmonic x 10,000

79 UL3 8th harmonic x 10,000

80 UL1 9th harmonic x 10,000

Key Measured quantities (data recorder) Factor/unit

66 PEM575_D00016_01_M_XXEN/05.2016

Page 67: PEM575 - Bender

Logging

81 UL2 9th harmonic x 10,000

82 UL3 9th harmonic x 10,000

83 UL1 10th harmonic x 10,000

84 UL2 10th harmonic x 10,000

85 UL3 10th harmonic x 10,000

86 UL1 11th harmonic x 10,000

87 UL2 11th harmonic x 10,000

88 UL2 11th harmonic x 10,000

89 UL1 12th harmonic x 10,000

90 UL2 12th harmonic x 10,000

91 UL3 12th harmonic x 10,000

92 UL1 13th harmonic x 10,000

93 UL2 13th harmonic x 10,000

94 UL3 13th harmonic x 10,000

95 UL1 14th harmonic x 10,000

96 UL2 14th harmonic x 10,000

97 UL3 14th harmonic x 10,000

98 UL1 15th harmonic x 10,000

99 UL2 15th harmonic x 10,000

100 UL3 15th harmonic x 10,000

101 UL1 16th harmonic x 10,000

102 UL2 16th harmonic x 10,000

103 UL3 16th harmonic x 10,000

104 UL1 17th harmonic x 10,000

105 UL2 17th harmonic x 10,000

106 UL3 17th harmonic x 10,000

Key Measured quantities (data recorder) Factor/unit

67PEM575_D00016_01_M_XXEN/05.2016

Page 68: PEM575 - Bender

Logging

107 UL1 18th harmonic x 10,000

108 UL2 18th harmonic x 10,000

109 UL3 18th harmonic x 10,000

110 UL1 19th harmonic x 10,000

111 UL2 19th harmonic x 10,000

112 UL3 19th harmonic x 10,000

113 UL1 20th harmonic x 10,000

114 UL2 20th harmonic x 10,000

115 UL3 20th harmonic x 10,000

116 UL1 21st harmonic x 10,000

117 UL2 21st harmonic x 10,000

118 UL2 21st harmonic x 10,000

119 UL1 22nd harmonic x 10,000

120 UL2 22nd harmonic x 10,000

121 UL3 22nd harmonic x 10,000

122 UL1 23rd harmonic x 10,000

123 UL2 23rd harmonic x 10,000

124 UL3 23rd harmonic x 10,000

125 UL1 24th harmonic x 10,000

126 UL2 24th harmonic x 10,000

127 UL3 24th harmonic x 10,000

128 UL1 25th harmonic x 10,000

129 UL2 25th harmonic x 10,000

130 UL3 25th harmonic x 10,000

131 I1 2nd harmonic x 10,000

132 I2 2nd harmonic x 10,000

Key Measured quantities (data recorder) Factor/unit

68 PEM575_D00016_01_M_XXEN/05.2016

Page 69: PEM575 - Bender

Logging

133 I3 2nd harmonic x 10,000

134 I1 3rd harmonic x 10,000

135 I2 3rd harmonic x 10,000

136 I3 3rd harmonic x 10,000

137 I1 4th harmonic x 10,000

138 I2 4th harmonic x 10,000

139 I3 4th harmonic x 10,000

140 I1 5th harmonic x 10,000

141 I2 5th harmonic x 10,000

142 I3 5th harmonic x 10,000

143 I1 6th harmonic x 10,000

144 I2 6th harmonic x 10,000

145 I3 6th harmonic x 10,000

146 I1 7th harmonic x 10,000

147 I2 7th harmonic x 10,000

148 I3 7th harmonic x 10,000

149 I1 8th harmonic x 10,000

150 I2 8th harmonic x 10,000

151 I3 8th harmonic x 10,000

152 I1 9th harmonic x 10,000

153 I2 9th harmonic x 10,000

154 I3 9th harmonic x 10,000

155 I1 10th harmonic x 10,000

156 I2 10th harmonic x 10,000

157 I3 10th harmonic x 10,000

158 I1 11th harmonic x 10,000

Key Measured quantities (data recorder) Factor/unit

69PEM575_D00016_01_M_XXEN/05.2016

Page 70: PEM575 - Bender

Logging

159 I2 11th harmonic x 10,000

160 I2 11th harmonic x 10,000

161 I1 12th harmonic x 10,000

162 I2 12th harmonic x 10,000

163 I3 12th harmonic x 10,000

164 I1 13th harmonic x 10,000

165 I2 13th harmonic x 10,000

166 I3 13th harmonic x 10,000

167 I1 14th harmonic x 10,000

168 I2 14th harmonic x 10,000

169 I3 14th harmonic x 10,000

170 I1 15th harmonic x 10,000

171 I2 15th harmonic x 10,000

172 I3 15th harmonic x 10,000

173 I1 16th harmonic x 10,000

174 I2 16th harmonic x 10,000

175 I3 16th harmonic x 10,000

176 I1 17th harmonic x 10,000

177 I2 17th harmonic x 10,000

178 I3 17th harmonic x 10,000

179 I1 18th harmonic x 10,000

180 I2 18th harmonic x 10,000

181 I3 18th harmonic x 10,000

182 I1 19th harmonic x 10,000

183 I2 19th harmonic x 10,000

184 I3 19th harmonic x 10,000

Key Measured quantities (data recorder) Factor/unit

70 PEM575_D00016_01_M_XXEN/05.2016

Page 71: PEM575 - Bender

Logging

185 I1 20th harmonic x 10,000

186 I2 20th harmonic x 10,000

187 I3 20th harmonic x 10,000

188 I1 21st harmonic x 10,000

189 I2 21st harmonic x 10,000

190 I2 21st harmonic x 10,000

191 I1 22nd harmonic x 10,000

192 I2 22nd harmonic x 10,000

193 I3 22nd harmonic x 10,000

194 I1 23rd harmonic x 10,000

195 I2 23rd harmonic x 10,000

196 I3 23rd harmonic x 10,000

197 I1 24th harmonic x 10,000

198 I2 24th harmonic x 10,000

199 I3 24th harmonic x 10,000

200 I1 25th harmonic x 10,000

201 I2 25th harmonic x 10,000

202 I3 25th harmonic x 10,000

203 Demand UL1 x 100, V204 Demand UL2 x 100, V205 Demand UL3 x 100, V206 Ø Demand ULN x 100, V207 Demand UL1L2 x 100, V208 Demand UL2L3 x 100, V209 Demand UL3L1 x 100, V210 Ø Demand ULL x 100, V211 Demand I1 x 1000, A

Key Measured quantities (data recorder) Factor/unit

71PEM575_D00016_01_M_XXEN/05.2016

Page 72: PEM575 - Bender

Logging

212 Demand I2 x 1000, A213 Demand I3 x 1000, A214 Ø Demand I x 1000, A215 Demand I4

1) x 1000, A

216 Demand PL1 W217 Demand PL2 W218 Demand PL3 W219 Demand Pges W220 Demand QL1 var221 Demand QL2 var222 Demand QL3 var223 Demand Qges var224 Demand SL1 VA225 Demand SL2 VA226 Demand SL3 VA227 Demand Sges VA228 Demand λ1 x 1000229 Demand λ2 x 1000230 Demand λ3 x 1000231 Demand λges x 1000232 Demand f x 100, Hz233 Demand voltage unbalance x 1000234 Demand current unbalance x 1000235 Demand THDUL1 x 10,000236 Demand THDUL2 x 10,000237 Demand THDUL3 x 10,000238 Demand THDI1 x 10,000239 Demand THDI2 x 10,000240 Demand THDI3 x 10,000241 UL1 max (per demand period) x 100, V

Key Measured quantities (data recorder) Factor/unit

72 PEM575_D00016_01_M_XXEN/05.2016

Page 73: PEM575 - Bender

Logging

242 UL2 max (per demand period) x 100, V243 UL3 max (per demand period) x 100, V244 Ø ULN max (per demand period) x 100, V245 UL1L2 max (per demand period) x 100, V246 UL2L3 max (per demand period) x 100, V247 UL3L1 max (per demand period) x 100, V248 Ø ULL max (per demand period) x 100, V249 I1 max (per demand period) x 1000, A250 I2 max (per demand period) x 1000, A251 I3 max (per demand period) x 1000, A252 Ø I max (per demand period) x 1000, A253 I4 max (per demand period) x 1000, A254 PL1 max (per demand period) W255 PL2 max (per demand period) W256 PL3 max (per demand period) W257 Pges max (per demand period) W258 QL1 max (per demand period) var259 QL2 max (per demand period) var260 QL3 max (per demand period) var261 Qges max (per demand period) var262 SL1 max (per demand period) VA263 SL2 max (per demand period) VA264 SL3 max (per demand period) VA265 Sges max (per demand period) VA266 λ1 max (per demand period) x 1000267 λ2 max (per demand period) x 1000268 λ3 max (per demand period) x 1000269 λges max (per demand period) x 1000270 f max (per demand period) x 100, Hz

Key Measured quantities (data recorder) Factor/unit

73PEM575_D00016_01_M_XXEN/05.2016

Page 74: PEM575 - Bender

Logging

271 max. voltage unbalance(per demand period)

x 1000

272 max. current unbalance(per demand period)

x 1000

273 THDUL1 max (per demand period) x 10,000274 THDUL2 max (per demand period) x 10,000275 THDUL3 max (per demand period) x 10,000276 THDI1 max (per demand period) x 10,000277 THDI2 max (per demand period) x 10,000278 THDI3 max (per demand period) x 10,000279 UL1 min (per demand period) x 100, V280 UL2 min (per demand period) x 100, V281 UL3 min (per demand period) x 100, V282 Ø ULN min (per demand period) x 100, V283 UL1L2 min (per demand period) x 100, V284 UL2L3 min (per demand period) x 100, V285 UL3L1 min (per demand period) x 100, V286 Ø ULL min (per demand period) x 100, V287 I1 min (per demand period) x 1000, A288 I2 min (per demand period) x 1000, A289 I3 min (per demand period) x 1000, A290 Ø I min (per demand period) x 1000, A291 I4 min (per demand period) x 1000, A292 PL1 min (per demand period) W293 PL2 min (per demand period) W294 PL3 min (per demand period) W295 Pges min (per demand period) W296 QL1 min (per demand period) var297 QL2 min (per demand period) var298 QL3 min (per demand period) var299 Qges min (per demand period) var

Key Measured quantities (data recorder) Factor/unit

74 PEM575_D00016_01_M_XXEN/05.2016

Page 75: PEM575 - Bender

Logging

300 SL1 min (per demand period) VA301 SL2 min (per demand period) VA302 SL3 min (per demand period) VA303 Sges min (per demand period) VA304 λ1 min (per demand period) x 1000305 λ2 min (per demand period) x 1000306 λ3 min (per demand period) x 1000307 λges min (per demand period) x 1000308 f min (per demand period) x 100, Hz309 min. voltage unbalance (per demand period) x 1000310 min. current unbalance (per demand period) x 1000311 THDUL1 min (per demand period) x 10,000312 THDUL2 min (per demand period) x 10,000313 THDUL3 min (per demand period) x 10,000314 THDI1 min (per demand period) x 10,000315 THDI2 min (per demand period) x 10,000316 THDI3 min (per demand period) x 10,000317 UL1 (f0) / UL1L2 (f0) x 100, V318 UL2 (f0) / UL2L3 (f0) x 100, V319 UL3 (f0) / UL1L3 (f0) x 100, V320 I1 (f0) x 1,000, A321 I2 (f0) x 1,000, A322 I3 (f0) x 1,000 A323 Active energy import ges kWh324 Active energy export ges kWh325 Active energy ges kWh326 Reactive energy import ges kvarh327 Reactive energy export ges kvarh328 Reactive energy ges kvarh

Key Measured quantities (data recorder) Factor/unit

75PEM575_D00016_01_M_XXEN/05.2016

Page 76: PEM575 - Bender

Logging

Tab. 8.3: Selectable measured quantities, data recorder

8.4 Energy logThe energy log stores the interval energy consumption for Active energy import Active energy export Reactive energy import Reactive energy export Apparent energyThese measured values are stored in a non-volatile memory and will not suffer any loss in the event of power failure. For the recording of the total energy values such as Pges or Qges the data recorder has to be used.The programming of the energy log is only supported over communications. The following set-up parameters are supported:

Tab. 8.4: Setup energy log

No. Parameters Setting

1 Recording mode0 = disabled1 = stop-when-full2 = FIFO (First-In-First-Out)

2 Number of measure-ments

0…65535 (entries)

3 Recording interval

0 = 5 min1 = 10 min2 = 15 min3 = 30 min4 = 60 min

4 Start time yy/mm/dd, hh:mm:ss

5 Number of parame-ters

0…5

6 Parameters 1…5

0 = Import P1 = Export P2 = Import Q3 = Export Q4 = S

76 PEM575_D00016_01_M_XXEN/05.2016

Page 77: PEM575 - Bender

Logging

The energy log will only become active when the values of the Setup settings 1…5 are all non-zero.For details refer to Modbus registers 7700…7712.

8.5 Waveform recording (WFR)The PEM575 provides two waveform recorders capable of recording waveforms independently from one another. The total capacity of WFR 1 and WFR 2 is 32. Each waveform recorder can simultaneously record 3-phase voltage and current signals at a maximum resolution of 256 samples per cycle. Waveform recorders can be triggered by Setpoints Undervoltage/overvoltage (sag/swell) Transient events Communications interface (manual)

During this process the control via communications interface has the highest priority. Other WFR triggers will be ignored until recording is completed.

Each WFR log has a capacity of 32 entries. If there are more than 32 entries, the newest entry will replace the oldest entry on a first-in-first-out basis: Der 33rd entry overwrites the 1st entry, the 34th the 2nd etc.WFR data is stored in a non-volatile memory and will not suffer any loss in the event of power failure.

The programming of the waveform recorder log is only supported by the communications interface. For details about the applied registers and their data structure refer to page 133. The following set-up parameters are supported:

No. Parameters Setting

1 Number of measurements 0…32 (entries)

2 Number of samples per cycle 16, 32, 64, 128, 256 samples

3 Cycles per record 320, 160, 80, 40, 20 cycles

4 Number of cycles before the event 0…10 cycles

77PEM575_D00016_01_M_XXEN/05.2016

Page 78: PEM575 - Bender

Logging

The total capacity of WFR1 and WFR 2 is 32 entries. The valid formats from the number of samples per cycle and number of cycles are:

16 x 32032 x 16064 x 80128 x 40256 x 20

When the WFR format is 256 samples per cycle, the "number of pre-fault cycles" can only be set between 0 and 5.

Fig. 8.1: Waveform recording displayed in CP700

8.6 Power Quality log (PQ log)The PQ log can store up to 1,000 events such as undervoltage/overvoltage and transients. The newest event will replace the oldest event on a first-in-first-out basis: If there are more than 1000 entries, the 1001st entry will replace the first one, the 1002nd will replace the second one etc.Each entry includes the event classification, its relevant voltage values and a timestamp in 1 ms resolution. The PQ log can only be read via the communications interface. For details about the applied registers and their data structure refer to page 138.The PQ log can be reset from the front panel or via the communications interface.

78 PEM575_D00016_01_M_XXEN/05.2016

Page 79: PEM575 - Bender

Logging

8.7 Event log (SOE log)The device can store up to 512 events. The newest event will replace the oldest event on a first-in-first-out basis: The 513th event overwrites the first event, the 514th the second one, etc. Possible events: Failure supply voltage Setpoint status change Relay actions Digital input status changes Setup changes Each event record includes the event classification, the relevant parameter values and a timestamp in 1 ms resolution. All event entries can be retrieved via the communications interface. For details about the applied registers and their data structure refer to page 139.The event log can be cleared using the buttons on the front panel or via communications interface.

79PEM575_D00016_01_M_XXEN/05.2016

Page 80: PEM575 - Bender

Logging

80 PEM575_D00016_01_M_XXEN/05.2016

Page 81: PEM575 - Bender

9. Power Quality

9.1 FundamentalsPEM575 also provides the fundamental components (related to f(0)) for the measured quantities listed in the following table.

Tab. 9.1: Fundamental components

9.2 Harmonic distortionThe device provides an analysis of Total Harmonic Distortion (THD) Even total harmonic distortion (TEHD) odd total harmonic distortion (TOHD) k-factor all harmonics up to the 63rdorderAn evaluation of the harmonic components takes place provided that there is a current flow of at least 150 mA (current input 1 A) resp. 750 mA (current input 5 A).Individual harmonic distortions (THD) or individual distortion factors (THF) are determined.

Fundamental components

UL1(f0) UL2(f0) UL3(f0) Ø ULN (f0)

UL1L2(f0) UL2L3(f0) UL3L1(f0) Ø ULL(f0)

I1(f0) I2(f0) I3(f0) Ø I (f0)

PL1(f0) PL2(f0) PL3(f0) Pges (f0)

QL1(f0) QL2(f0) QL3 (f0) Qges (f0)

SL1 (f0) SL2 (f0) SL3 (f0) Sges (f0)

λL1(f0) λL2 (f0) λL3 (f0) λges(f0)

I4 (f0) (measured)

81PEM575_D00016_01_M_XXEN/05.2016

Page 82: PEM575 - Bender

Power Quality

k-factor calculation

All harmonics parameters are available through the communications interface. For details about the applied registers and their data structure refer to page 93.Up to the 31stharmonic the values can also be accessed through the buttons on the front panel.

THD U(k) = UkU1

x 100 %

THD I(k) = IkI1

x 100 %

Uk

Uk Σ∞

k = 1

THFU(k) = 2

x 100 %

Ik

Ik Σ∞

k = 1

THFI(k) = 2

x 100 %

Harmonic distortion (THD) Distortion factor (THF)

Σ

(Ihh)Σ 2 Ih = rms I of the harmonic No. h

hmax = number of the max. harmonic

h = harmonic No. h2

h=1

h=hmax

h=hmax

h=1k-factor =

(Ih)

82 PEM575_D00016_01_M_XXEN/05.2016

Page 83: PEM575 - Bender

Power Quality

The following parameters are supported:

Tab. 9.2: Parameters, harmonic distortion

9.3 Deviation from the pre-set nominal value (ΔU, Δf)The universal measuring device can measure voltage deviations UL1, UL2 and UL3 as well as the frequency deviation f from the pre-set nominal values Unom resp. fnom. The calculation method is listed below:

Application: Register 0072…0075; table 10.26

L1 L2 L3

Harmonics,voltage

THD THD THD

TEHD TEHD TEHD

TOHD TOHD TOHD

2ndharmonic 2nd harmonic 2nd harmonic

… … …

63rd harmonic 63rd harmonic 63rd harmonic

Harmonics,current

THD THD THD

TEHD TEHD TEHD

TOHD TOHD TOHD

k-factor k-factor k-factor

2nd harmonic 2nd harmonic 2nd harmonic

… … …

63rd harmonic 63rdharmonic 63rd harmonic

Voltage deviation ΔU = Unom

U - Unom x 100 %

Frequenzy deviation Δf = x 100 %fnom

f - fnom

83PEM575_D00016_01_M_XXEN/05.2016

Page 84: PEM575 - Bender

Power Quality

9.4 Undervoltage/overvoltage setpoint (sag/swell setpoint)The universal measuring device monitors the supply voltage for undervoltages and overvoltages (sag/swell) . The programming of the sag/swell setpoint is only carried out via the communications interface. For details about the applied registers and their data structure refer to page 135.

The following set-up parameters are supported:

1. Enable undervoltage/overvoltage disabled/enabled

2. Overvoltage limit 1.05…2 x Unom

3. Undervoltage limit 0.11…0.95 Unom

4. Trigger 1/Trigger 2 for undervoltage/overvoltageDO1…3 /DR 1…16/WFR1…2

9.5 Transient events setpointThe universal measuring device can detect transient events in the event of voltage disturbances. The programming of the transient setpoints is only supported by the communications interface (registers 6178… 6181). The following set-up parameters are supported:

1. Enable transient events disabled/enabled

2. Transient events limit 0.05…1.00 x Un

3. Trigger 1/Trigger 2 for transient events DO1…3/DR 1…16/ WFR1…2

9.6 Time synchronisationThe universal measuring device provides timestamps for all recorded data. The clock needs to be configured properly to achieve precise events and power quality analysis. The PEM575 features a clock that has a maximum error of 0.5 s per day. The internal battery keeps the real-time clock running in case of voltage interruption. There are two methods to synchronise the clock: SNTP server GPS via external device

84 PEM575_D00016_01_M_XXEN/05.2016

Page 85: PEM575 - Bender

10. Modbus Register Map

This chapter provides a complete description of the Modbus register (protocol version 6.0) for the PEM575 series to facilitate access to information. In general, the registers are implemented as Modbus Read Only Registers (RO = read only). with the exception of the DO control registers, which are implemented as Write Only Registers (WO = write only).The PEM575 supports the 4-digit addressing scheme and the following Modbus functions.

1. Holding register for reading values (Read Holding Register; function code 0x03)

2. Register for DO status setup(Force Single Coil; function code 0x05)

3. Register for device programming(Preset Multiple Registers; function code 0x10)

4. Read general reference(Read General Reference; function code 0x14)

For a complete Modbus protocol specification, visit http://www.modbus.org.

Explanatory comments relating to the read reference(function code 0x14)The Modbus function code "0x14" is used to access the stored data from the data recorder log (DR log) energy log power quality log (PQ log) waveform recorder log (WFR log)

85PEM575_D00016_01_M_XXEN/05.2016

Page 86: PEM575 - Bender

Modbus Register Map

Structure of data packet (function code 0x14)

Tab. 10.1: Data packets structure (function code 0x14)

Read reference request packet(master to PEM)

Read reference response packet(PEM to master)

Slave address 1 byte Slave address 1 byte

Function code (0x 14) 1 byte Function code (0x 14) 1 byte

Byte count 1 byte Byte count 1 byte

Sub-Req X, reference type (0x06)

1 byte Sub-Res X, byte count 1 byte

Sub-Req X,File number

2 bytesSub-Res X,Reference type (0x06)

1 byte

Sub-Req X,Start address

2 bytesSub-Res X,Register data

NxN0 bytes

Sub-Req X,Register count

2 bytes Sub-Res X+1…

Sub-Req X+1…

Error check 2 bytes Error check 2 bytes

86 PEM575_D00016_01_M_XXEN/05.2016

Page 87: PEM575 - Bender

Modbus Register Map

10.1 Basic measurements

Register Property Description Format Scale/unit

0000 RO UL1 1) Float V

0002 RO UL2 1) Float V

0004 RO UL3 1) Float V

0006 RO Ø ULN Float V

0008 RO UL1L2 Float V

0010 RO UL2L3 Float V

0012 RO UL3L1 Float V

0014 RO Ø ULL Float V

0016 RO I1 Float A

0018 RO I2 Float A

0020 RO I3 Float A

0022 RO Ø I Float A

0024 RO PL1 1) Float W

0026 RO PL2 1) Float W

0028 RO PL3 1) Float W

0030 RO Pges Float W

0032 RO QL1 1) Float var

0034 RO QL2 1) Float var

0036 RO QL3 1) Float var

0038 RO Qges Float var

0040 RO SL1 1) Float VA

0042 RO SL2 1) Float VA

0044 RO SL3 1) Float VA

0046 RO Sges Float VA

0048 RO λL1 1) Float

87PEM575_D00016_01_M_XXEN/05.2016

Page 88: PEM575 - Bender

Modbus Register Map

0050 RO λL2 1) Float

0052 RO λL3 1) Float

0054 RO λges Float

0056 RO f Float Hz

0058 RO I4 (measured) Float A

0060 RO I0 (= I4 calculated) Float A

0062…0069 Reserved

0070 RO Voltage unbalance UINT16 x 10002)

0071 RO Current unbalance UINT16 x 1000

0072 RO ΔUL1 INT16 x 10,000

0073 RO ΔUL2 INT16 x 10,000

0074 RO ΔUL3 INT16 x 10,000

0075 RO Δfn INT16 x 10,000

0076 RO Phase angle UL1 UINT16 x 100, °

0077 RO Phase angle UL2 UINT16 x 100, °

0078 RO Phase angle UL3 UINT16 x 100, °

0079 RO Phase angle I1 UINT16 x 100, °

0080 RO Phase angle I2 UINT16 x 100, °

0081 RO Phase angle I3 UINT16 x 100, °

0082…0084 Reserved

0085 RO Status digital inputs 3) UINT16

0086 RO Status digital outputs 4) UINT16

0087 RO Alarm 5) UINT32

0089 RO SOE Pointer 6) UINT32

0091 RO PQ Log Pointer7) UINT32

0093 RO WFR1 Log Pointer8) UINT32

0095 RO WFR2 Log Pointer8) UINT32

0097 RO Energy Log Pointer9) UINT32

Register Property Description Format Scale/unit

88 PEM575_D00016_01_M_XXEN/05.2016

Page 89: PEM575 - Bender

Modbus Register Map

Tab. 10.2: Basic measurements

Notes on table 10.2:1) Only in the case of wye connection (WYE).2) "x 1000" indicates the value returned in the register is 1000 times the measured value (the

value of the register must be divided by 1000 for an accurate measuring value).3) Status register 0085:

Represents the status of the six digital inputs

B0 B5 for DI1 DI6 (1 = active/closed; 0 = inactive/open)4) Status register 0086:

Represents the status of the three digital outputsB0 for DO1 (1 = active/closed; 0 = inactive/open)

B1 for DO2 (1 = active/closed; 0 = inactive/open)

B2 for DO3 (1 = active/closed; 0 = inactive/open)

0099 RO DR1 Pointer (highspeed)10) UINT32

0101 RO DR2 Pointer (highspeed)10) UINT32

0103 RO DR3 Pointer (highspeed)10) UINT32

0105 RO DR4 Pointer (highspeed)10) UINT32

0107 RO DR5 pointer (standard)10) UINT32

0129 RO DR16 pointer (standard)10) UINT32

0131 RO Total memory 11) UINT32

0133 RO Available memory11) UINT32

Register Property Description Format Scale/unit

89PEM575_D00016_01_M_XXEN/05.2016

Page 90: PEM575 - Bender

Modbus Register Map

5) The alarm register 0087 indicates the various alarm statuses (1 = active, 0 = inactive). Details of the alarm register are shown in the following table:

Tab. 10.3: Bit sequence alarm register (0087)

6) The SOE pointer points to the last entry added. The event log can store up to 512 events. It works like a ring buffer according to the FIFO principle: The 513rd value overwrites the first value, the 514th the second one and so on. The event log can be reset in the setup parameter menu (see page 46).

7) Der PQ log pointer points to the last value added. The PQ log can store up to 1000 events. It works like a ring buffer according to the FIFO principle: The 1001st value overwrites the first value, the 1002nd the second one and so on. A reset of the PQ log can be carried out in the set-up parameters (see page 46).

8) The PEM575 utilises two waveform recorders (WFR). Each WFR has its own pointer that indi-cates the most recently added entry in each case. The two WFR together can store up to 32 events. It works like a ring buffer according to the FIFO principle: the 33rd entry overwrites the first value, the 34th the second and so on. The WFR log can be reset via the communica-tions interface.

Bit No. Alarm event Bit

No. Alarm event Bit No. Alarm event

B0 Setpoint 1 (standard) B11 Setpoint 12 (standard) B22 Setpoint 23 (high-speed)

B1 Setpoint 2(standard) B12 Setpoint 13 (standard) B23 Setpoint 24 (high-speed)

B2 Setpoint 3 (standard) B13 Setpoint 14 (standard) B24 Logic module 1

B3 Setpoint 4 (standard) B14 Setpoint 15 (standard) B25 Logic module 2

B4 Setpoint 5 (standard) B15 Setpoint 16 (standard) B26 Logic module 3

B5 Setpoint 6 (standard) B16 Setpoint 17 (high-speed)

B27 Logic module 4

B6 Setpoint 7 (standard) B17 Setpoint 18 (high-speed)

B28 Logic module 5

B7 Setpoint 8 (standard) B18 Setpoint 19 (high-speed)

B29 Logic module 6

B8 Setpoint 9 (standard) B19 Setpoint 20 (high-speed)

B30 Reserved

B9 Setpoint 10 (standard) B20 Setpoint 21 (high-speed)

B31 Reserved

B10 Setpoint 11 (standard) B21 Setpoint 22 (high-speed)

90 PEM575_D00016_01_M_XXEN/05.2016

Page 91: PEM575 - Bender

Modbus Register Map

9) The range of the Energy Log Pointer can be between 0 and 0xFFFFFFFF. As soon as the maximum value is reached, it starts again with 0. The Energy Log can always be reset via the communications interface.

10) The PEM575 provides 16 data recorders (DR1…DR16). Each DR has its own pointer that points to the last entry in each case. Each DR can be reset via the communications interface.

11) The total memory size of the PEM575 is 4 MB (4096 kB). Used memory = 3936 kB–Available memory.

10.2 Energy measurement

Register Property Description Format Unit

0200 RW Active energy import UINT32 kWh

0202 RW Active energy export UINT32 kWh

0204 RO Active energy net amount INT32 kWh

0206 RO Total active energy UINT32 kWh

0208 RW Reactive energy import UINT32 kvarh

0210 RW Reactive energy export UINT32 kvarh

0212 RO Reactive energy net amount INT32 kvarh

0214 RO Total reactive energy UINT32 kvarh

0216 RW Apparent energy UINT32 kVAh

0218 RW 1st Quadrant reactive energy UINT32 kvarh

0220 RW 2nd Quadrant, reactive energy UINT32 kvarh

0222 RW 3rd Quadrant, reactive energy UINT32 kvarh

0224 RW 4th Quadrant, reactive energy UINT32 kvarh

0226 RO Active energy import, fractional value Float Ws

0228 RO Active energy export, fractional value Float Ws

0230 RO Active energy net value Float Ws

0232 RO Total active energy value Float Ws

0234 RO Reactive energy import, fractional value Float vars

0236 RO Reactive energy export, fractional value Float vars

0238 RO Reactive energy net value Float vars

91PEM575_D00016_01_M_XXEN/05.2016

Page 92: PEM575 - Bender

Modbus Register Map

Tab. 10.4: Energy measurements

Note: After reaching the maximum value of 999.999.999 kWh/kvarh/kVAh, the measurement starts again with 0.

10.3 Pulse counterThe value stored in the registers 0350…0360 is 1000 times the actual value, i.e. the register value must be divided by 1000 for an accurate measuring value.

Tab. 10.5: Pulse counter

0240 RO Total amount of reactive energy Float vars

0242 RO Apparent energy amount Float VAs

0244 RO Reactive energy 1st quadrant, fractional value Float vars

0246 RO Reactive energy 2nd quadrant, fractional value Float vars

0248 RO Reactive energy 3rd quadrant, fractional value Float vars

0250 RO Reactive energy 4th quadrant, fractional value Float vars

Register Property Description Format

0350 RW Pulse counter DI1 UINT32

0352 RW Pulse counter DI2 UINT32

0354 RW Pulse counter DI3 UINT32

0356 RW Pulse counter DI4 UINT32

0358 RW Pulse counter DI5 UINT32

0360 RW Pulse counter DI6 UINT32

Register Property Description Format Unit

92 PEM575_D00016_01_M_XXEN/05.2016

Page 93: PEM575 - Bender

Modbus Register Map

10.4 Fundamental measurements (Power quality)The registers 0400…0456 contain measured values which relate to the fundamental f0.

Register Property Description Format Unit

0400 RO UL1(f0) 1) Float V

0402 RO UL2 (f0) 1) Float V

0404 RO UL3 (f0) 1) Float V

0406 RO Ø ULN (f0)1) Float V

0408 RO UL1L2 (f0)2) Float V

0410 RO UL2L3 (f0)2) Float V

0412 RO UL3L1 (f0)2) Float V

0414 RO Ø ULL (f0)2) Float V

0416 RO I1(f0) Float A

0418 RO I2 (f0) Float A

0420 RO I3( f0) Float A

0422 RO Ø I (f0) Float A

0424 RO I4 (f0)3) or reserved Float A

0426 RO PL1(f0) 1) Float W

0428 RO PL2(f0) 1) Float W

0430 RO PL3 (f0) 1) Float W

0432 RO Pges (f0) Float W

0434 RO QL1 (f0) 1) Float var

0436 RO QL2 (f0)1) Float var

0438 RO QL3 (f0) 1) Float var

0440 RO Qges (f0) Float var

93PEM575_D00016_01_M_XXEN/05.2016

Page 94: PEM575 - Bender

Modbus Register Map

Tab. 10.6: Fundamental measurement

table 10.6Notes:1) Only when the wiring mode is WYE.2) Only when the wiring mode is DELTA.

3) Only if the device is equipped with the I4 input, otherwise it is reserved.

0442 RO SL1 (f0) 1) Float VA

0444 RO SL2 (f0) 1) Float VA

0446 RO SL3 (f0) 1) Float VA

0448 RO Sges (f0) Float VA

0450 RO λL1 (f0) 1) Float

0452 RO λL2 (f0) 1) Float

0454 RO λL3 (f0) 1) Float

0456 RO λges (f0) Float

Register Property Description Format Unit

94 PEM575_D00016_01_M_XXEN/05.2016

Page 95: PEM575 - Bender

Modbus Register Map

10.5 Harmonic measurements (Power quality)

Register Property Description Format Unit

0458 RO k-factor I1 UINT16 x10

0459 RO k-factor I2 UINT16 x10

0460 RO k-factor I3 UINT16 x10

0461 RO THDUL1 UINT16 x 10,000

0462 RO THDUL2 UINT16 x 10,000

0463 RO THDUL3 UINT16 x 10,000

0464 RO THDI1 UINT16 x 10,000

0465 RO THDI2 UINT16 x 10,000

0466 RO THDI3 UINT16 x 10,000

0467 RO THDI4 1)or reserved UINT16 x 10,000

0468 RO TOHDUL1 UINT16 x 10,000

0469 RO TOHDUL2 UINT16 x 10,000

0470 RO TOHDUL3 UINT16 x 10,000

0471 RO TOHDI1 UINT16 x 10,000

0472 RO TOHDI2 UINT16 x 10,000

0473 RO TOHDI3 UINT16 x 10,000

0474 RO TOHDI4 1)or reserved UINT16 x 10,000

0475 RO TEHDUL1 UINT16 x 10,000

0476 RO TEHDUL2 UINT16 x 10,000

0477 RO TEHDUL3 UINT16 x 10,000

0478 RO TEHDI1 UINT16 x 10,000

0479 RO TEHDI2 UINT16 x 10,000

0480 RO TEHDI3 UINT16 x 10,000

95PEM575_D00016_01_M_XXEN/05.2016

Page 96: PEM575 - Bender

Modbus Register Map

Tab. 10.7: Harmonic measurements

Note table 10.7:1) Only if the device is equipped with the I4 input, otherwise it is reserved.

0481 RO TEHDI4 1)or reserved UINT16 x 10,000

0482 RO UL1 2nd harmonic UINT16 x 10,000

0483 RO UL2 2nd harmonic UINT16 x 10,000

0484 RO UL3 2nd harmonic UINT16 x 10,000

0485 RO I1 2nd harmonic UINT16 x 10,000

0486 RO I2 2nd harmonic UINT16 x 10,000

0487 RO I3 2ndharmonic UINT16 x 10,000

0488 RO I4 2nd harmonic UINT16 x 10,000

… RO … UINT16 x 10,000

0909 RO UL1 63rd harmonic UINT16 x 10,000

0910 RO UL2 63rd harmonic UINT16 x 10,000

0911 RO UL3 63rd harmonic UINT16 x 10,000

0912 RO I1 63rd harmonic UINT16 x 10,000

0913 RO I2 63rd harmonic UINT16 x 10,000

0914 RO I3 63rd harmonic UINT16 x 10,000

0915 RO I4 63rd harmonic UINT16 x 10,000

Register Property Description Format Unit

96 PEM575_D00016_01_M_XXEN/05.2016

Page 97: PEM575 - Bender

Modbus Register Map

10.6 High-speed measurement

Register Property Description Format Unit

0930 RO UL1 1) Float V

0932 RO UL2 1) Float V

0934 RO UL3 1) Float V

0936 RO Ø ULN 1) Float V

0938 RO UL1L2 Float V

0940 RO UL2L3 Float V

0942 RO UL3L1 Float V

0944 RO Ø ULL Float V

0946 RO I1 Float A

0948 RO I2 Float A

0950 RO I3 Float A

0952 RO Ø I Float A

0954 RO I4 2) or reserved Float A

0956 RO PL1 1) Float W

0958 RO PL2 1) Float W

0960 RO PL3 1) Float W

0962 RO Pges Float W

0964 RO QL1 1) Float var

0966 RO QL2 1) Float var

0968 RO QL3 1) Float var

0970 RO Qges Float var

0972 RO SL1 1) Float VA

0974 RO SL2 1) Float VA

0976 RO SL3 1) Float VA

0978 RO Sges Float VA

97PEM575_D00016_01_M_XXEN/05.2016

Page 98: PEM575 - Bender

Modbus Register Map

Tab. 10.8: Register high-speed measurement

Note table 10.8:1) Only when the wiring mode is WYE.2) Only if the device is equipped with the I4 input, otherwise it is reserved

0980 RO λL1 1) Float

0982 RO λL2 1) Float

0984 RO λL3 1) Float

0986 RO λges Float

Register Property Description Format Unit

98 PEM575_D00016_01_M_XXEN/05.2016

Page 99: PEM575 - Bender

Modbus Register Map

10.7 Demand

10.7.1 Present demand

Register Property Description Format Unit

1000 RO Demand UL1 INT32 x 100, V

1002 RO Demand UL2 INT32 x 100, V

1004 RO Demand UL3 INT32 x 100, V

1006 RO Ø Demand ULN INT32 x 100, V

1008 RO Demand UL1L2 INT32 x 100, V

1010 RO Demand UL2L3 INT32 x 100, V

1012 RO Demand UL3L1 INT32 x 100, V

1014 RO Ø Demand ULL INT32 x 100, V

1016 RO Demand I1 INT32 x 1000, A

1018 RO Demand I2 INT32 x 1000, A

1020 RO Demand I3 INT32 x 1000, A

1022 RO Ø Demand I INT32 x 1000, A

1024 RO Demand I4 1) or reserved INT32 x 1000, A

1026 RO Demand PL1 INT32 W

1028 RO Demand PL2 INT32 W

1030 RO Demand PL3 INT32 W

1032 RO Demand Pges INT32 W

1034 RO Demand QL1 INT32 var

1036 RO Demand QL2 INT32 var

1038 RO Demand QL3 INT32 var

1040 RO Demand Qges INT32 var

1042 RO Demand SL1 INT32 VA

1044 RO Demand SL2 INT32 VA

1046 RO Demand SL3 INT32 VA

1048 RO Demand Sges INT32 VA

99PEM575_D00016_01_M_XXEN/05.2016

Page 100: PEM575 - Bender

Modbus Register Map

Tab. 10.9: Register: Present demands

1) Only if the device is equipped with the I4 input, otherwise it is reserved

10.7.2 Predicted demand

1050 RO Demand λ1 INT32 x 1,000

1052 RO Demand λ2 INT32 x 1,000

1054 RO Demand λ3 INT32 x 1,000

1056 RO Demand λges INT32 x 1,000

1058 RO Demand f INT32 x 100, Hz

1060 RO Demand voltage unbalance INT32 x 1,000

1062 RO Demand current unbalance INT32 x 1,000

1064 RO Demand THDUL1 INT32 x 10,000

1066 RO Demand THDUL2 INT32 x 10,000

1068 RO Demand THDUL3 INT32 x 10,000

1070 RO Demand THDI1 INT32 x 10,000

1072 RO Demand THDI2 INT32 x 10,000

1074 RO Demand THDI3 INT32 x 10,000

Register Property Description Format Unit

1200 RO Predicted demand UL1 INT32 x 100, V

1202 RO Predicted demand UL2 INT32 x 100, V

1204 RO Predicted demand UL3 INT32 x 100, V

1206 RO Ø Predicted demand ULN INT32 x 100, V

1208 RO Predicted demand UL1L2 INT32 x 100, V

1210 RO Predicted demand UL2L3 INT32 x 100, V

1212 RO Predicted demand UL3L1 INT32 x 100, V

1214 RO Ø Predicted demand ULL INT32 x 100, V

1216 RO Predicted demand I1 INT32 x 1,000, A

Register Property Description Format Unit

100 PEM575_D00016_01_M_XXEN/05.2016

Page 101: PEM575 - Bender

Modbus Register Map

1218 RO Predicted demand I2 INT32 x 1,000, A

1220 RO Predicted demand I3 INT32 x 1,000, A

1222 RO Ø Predicted demand I INT32 x 1,000, A

1224 RO Predicted demand I4 1) INT32 x 1,000, A

1226 RO Predicted demand PL1 INT32 W

1228 RO Predicted demand PL2 INT32 W

1230 RO Predicted demand PL3 INT32 W

1232 RO Predicted demand Pges INT32 W

1234 RO Predicted demand QL1 INT32 var

1236 RO Predicted demand QL2 INT32 var

1238 RO Predicted demand QL3 INT32 var

1240 RO Predicted demand Qges INT32 var

1242 RO Predicted demand SL1 INT32 VA

1244 RO Predicted demand SL2 INT32 VA

1246 RO Predicted demand SL3 INT32 VA

1248 RO Predicted demand Sges INT32 VA

1250 RO Predicted demand λ1 INT32 x 1,000

1252 RO Predicted demand λ2 INT32 x 1,000

1254 RO Predicted demand λ3 INT32 x 1,000

1256 RO Predicted demand λges INT32 x 1,000

1258 RO Predicted demand f INT32 x 100, Hz

1260 RO Predicted demand, voltage unbalance INT32 x 1,000

1262 RO Predicted demand, current unbalance INT32 x 1,000

1264 RO Predicted demand THDUL1 INT32 x 10,000

1266 RO Predicted demand THDUL2 INT32 x 10,000

1268 RO Predicted demand THDUL3 INT32 x 10,000

Register Property Description Format Unit

101PEM575_D00016_01_M_XXEN/05.2016

Page 102: PEM575 - Bender

Modbus Register Map

Tab. 10.10: Predicted demand

1) Register 1224 is valid only if the device is equipped with the I4 input, otherwise it is reserved.

10.7.3 Maximum values per demand period

1270 RO Predicted demand THDI1 INT32 x 10,000

1272 RO Predicted demand THDI2 INT32 x 10,000

1274 RO Predicted demand THDI3 INT32 x 10,000

Register Property Description Format Unit

1400 RO UL1 max INT32 x 100, V

1402 RO UL2 max INT32 x 100, V

1404 RO UL3 max INT32 x 100, V

1406 RO Ø ULN max INT32 x 100, V

1408 RO UL1L2 max INT32 x 100, V

1410 RO UL2L3 max INT32 x 100, V

1412 RO UL3L1 max INT32 x 100, V

1414 RO Ø ULL max INT32 x 100, V

1416 RO I1 max INT32 x 1,000, A

1418 RO I2 max INT32 x 1,000, A

1420 RO I3 max INT32 x 1,000, A

1422 RO Ø I max INT32 x 1,000, A

1424 RO I4 max 1) or reserved INT32 x 1,000, A

1426 RO PL1 max INT32 W

1428 RO PL2 max INT32 W

1430 RO PL3 max INT32 W

1432 RO Pges max INT32 W

Register Property Description Format Unit

102 PEM575_D00016_01_M_XXEN/05.2016

Page 103: PEM575 - Bender

Modbus Register Map

Tab. 10.11: Maximum values per demand period

1) Register 1424 is valid only if the device is equipped with the I4 input, otherwise it is reserved.

1434 RO QL1 max INT32 var

1436 RO QL2 max INT32 var

1438 RO QL3 max INT32 var

1440 RO Qges max INT32 var

1442 RO SL1 max INT32 VA

1444 RO SL2 max INT32 VA

1446 RO SL3 max INT32 VA

1448 RO Sges max INT32 VA

1450 RO λ1 max INT32 x 1,000

1452 RO λ2 max INT32 x 1,000

1454 RO λ3 max INT32 x 1,000

1456 RO λges max INT32 x 1,000

1458 RO f max INT32 x 100, Hz

1460 RO max. voltage unbalance INT32 x 1,000

1462 RO max. current unbalance INT32 x 1,000

1464 RO THDUL1 max INT32 x 10,000

1466 RO THDUL2 max INT32 x 10,000

1468 RO THDUL3 max INT32 x 10,000

1470 RO THDI1 max INT32 x 10,000

1472 RO THDI2 max INT32 x 10,000

1474 RO THDI3 max INT32 x 10,000

Register Property Description Format Unit

103PEM575_D00016_01_M_XXEN/05.2016

Page 104: PEM575 - Bender

Modbus Register Map

10.7.4 Minimum values per demand period

Register Property Description Format Unit

1600 RO UL1 min INT32 x 100, V

1602 RO UL2 min INT32 x 100, V

1604 RO UL3 min INT32 x 100, V

1606 RO Ø ULN min INT32 x 100, V

1608 RO UL1L2 min INT32 x 100, V

1610 RO UL2L3 min INT32 x 100, V

1612 RO UL3L1 min INT32 x 100, V

1614 RO Ø ULL min INT32 x 100, V

1616 RO I1 min INT32 x 1,000, A

1618 RO I2 min INT32 x 1,000, A

1620 RO I3 min INT32 x 1,000, A

1622 RO Ø I min INT32 x 1,000, A

1624 RO I4 min 1) or reserved INT32 x 1,000, A

1626 RO PL1 min INT32 W

1628 RO PL2 min INT32 W

1630 RO PL3 min INT32 W

1632 RO Pges min INT32 W

1634 RO QL1 min INT32 var

1636 RO QL2 min INT32 var

1638 RO QL3 min INT32 var

1640 RO Qges min INT32 var

1642 RO SL1 min INT32 VA

1644 RO SL2 min INT32 VA

1646 RO SL3 min INT32 VA

1648 RO Sges min INT32 VA

104 PEM575_D00016_01_M_XXEN/05.2016

Page 105: PEM575 - Bender

Modbus Register Map

Tab. 10.12: Minimum values per demand period

1) Register 1624 is valid only if the device is equipped with the I4 input, otherwise it is reserved.

1650 RO λ1 min INT32 x 1,000

1652 RO λ2 min INT32 x 1,000

1654 RO λ3 min INT32 x 1,000

1656 RO λges min INT32 x 1,000

1658 RO f min INT32 x 100, Hz

1660 RO min. voltage unbalance INT32 x 1,000

1662 RO min. current unbalance INT32 x 1,000

1664 RO THDUL1 min INT32 x 10,000

1666 RO THDUL2 min INT32 x 10,000

1668 RO THDUL3 min INT32 x 10,000

1670 RO THDI1 min INT32 x 10,000

1672 RO THDI2 min INT32 x 10,000

1674 RO THDI3 min INT32 x 10,000

Register Property Description Format Unit

105PEM575_D00016_01_M_XXEN/05.2016

Page 106: PEM575 - Bender

Modbus Register Map

10.7.5 Peak demand of this monthThe value of the peak demand register is 1,000 times the actual value. To obtain a value in kW, kVA or kvar, the value of the register has to be divided by 1,000.

Tab. 10.13: Peak demand of this month

10.7.6 Peak demand last monthThe value of the peak demand register is 1,000 times the actual value. To obtain a value in kW, kVA or kvar, the value of the register has to be divided by 1,000.

Tab. 10.14: Peak demand of last month

Register Property Description Format Unit

1800…1805 ROPeak demand Pges of this month

see table 10.15, page 107

W

1806…1811 ROPeak demand Qges of this month

var

1812…1817 ROPeak demand Sges of this month

VA

1818…1823 RO Peak demand I1 of this month x 1,000, A

1824…1829 RO Peak demand I2 of this month x 1,000, A

1830…1835 RO Peak demand I3 of this month x 1,000, A

Register Property Description Format Unit

1850…1855 RO Peak demand Pges of last month

see table 10.15, page 107

W

1856…1861 RO Peak demand Qges of last month var

1862…1867 RO Peak demand Sges of last month VA

1868…1873 RO Peak demand I1 of last month x 1,000, A

1874…1879 RO Peak demand I2 of ast month x 1,000, A

1880…1885 RO Peak demand I3 of last month x 1,000, A

106 PEM575_D00016_01_M_XXEN/05.2016

Page 107: PEM575 - Bender

Modbus Register Map

10.7.7 Peak demand data structure

Tab. 10.15: Peak demand data structure

Offset Property Description Format Note

+ 0 RO Peak demand value INT32

+ 2RO HiWord: Year

UINT161…99 (year-2000)

RO LoWord: Month 1…12

+ 3RO HiWord: Date: Day

UINT161…28/29/30/31

RO LoWord: Hour 0…23

+ 4RO HiWord: Minute

UINT160…59

RO LoWord: Second 0…59

+ 5 RO Milliseconds UINT16 1…999

107PEM575_D00016_01_M_XXEN/05.2016

Page 108: PEM575 - Bender

Modbus Register Map

10.8 Max/Min log

10.8.1 Maximum values of this month

Register Property Description Format Factor/unit

2000…2005 RO UL1 maxsee table 10.20

x 100, V

2006…2011 RO UL2 max x 100, V

2012…2017 RO UL3 max x 100, V

2018…2023 RO Ø ULN max x 100, V

2024…2029 RO UL1L2 max x 100, V

2030…2035 RO UL2L3 max x 100, V

2036…2041 RO UL3L1 max x 100, V

2042…2047 RO Ø ULL max x 100, V

2048…2053 RO I1 max x 1,000, A

2054…2059 RO I2 max x 1,000, A

2060…2065 RO I3 max x 1,000, A

2066…2071 RO Ø I max x 1,000, A

2072…2077 RO I4 max 1) or reserved x 1,000, A

2078…2083 RO Pges max W

2084…2089 RO Qges max var

2090…2095 RO Sges max VA

2096…2101 RO λges max x 1,000

2102…2107 RO f max x 100, Hz

2108…2113 RO THDUL1 max x 10,000

2114…2119 RO THDUL2 max x 10,000

2120…2125 RO THDUL3 max x 10,000

2126…2131 RO THDI1 max x 10,000

2132…2137 RO THDI2 max x 10,000

108 PEM575_D00016_01_M_XXEN/05.2016

Page 109: PEM575 - Bender

Modbus Register Map

Tab. 10.16: Max log of this month

1) Register 2072…2077 are valid only if the device is equipped with the I4 input, otherwise it is reserved

2138…2143 RO THDI3 max x 10,000

2144…2149 RO k-factor I1

see table 10.20

x10

2150…2155 RO k-factor I2 x10

2156…2161 RO k-factor I3 x10

2162…2167 RO max. voltage unbalance x1,000

2168…2173 RO max. current unbalance x1,000

Register Property Description Format Factor/unit

109PEM575_D00016_01_M_XXEN/05.2016

Page 110: PEM575 - Bender

Modbus Register Map

10.8.2 Min log of this month

Register Property Description Format Factor/unit

2300…2305 RO UL1 min

see table 10.20

x 100, V

2306…2311 RO UL2 min x 100, V

2312…2317 RO UL3 min x 100, V

2318…2323 RO Ø ULN min x 100, V

2324…2329 RO UL1L2 min x 100, V

2330…2335 RO UL2L3 min x 100, V

2336…2341 RO UL3L1 min x 100, V

2342…2347 RO Ø ULL min x 100, V

2348…2353 RO I1 min x 1,000, A

2354…2359 RO I2 min x 1,000, A

2360…2365 RO I3 min x 1,000, A

2366…2371 RO Ø I min x 1,000, A

2372…2377 RO I4 min 1) or reserved x 1,000, A

2378…2383 RO Pges min W

2384…2389 RO Qges min var

2390…2395 RO Sges min VA

2396…2401 RO λges min x 1,000

2402…2407 RO f min x 100, Hz

2408…2413 RO THDUL1 min x 10,000

2414…2419 RO THDUL2 min x 10,000

2420…2425 RO THDUL3 min x 10,000

2426…2431 RO THDI1 min x 10,000

2432…2437 RO THDI2 min x 10,000

2438…2443 RO THDI3 min x 10,000

110 PEM575_D00016_01_M_XXEN/05.2016

Page 111: PEM575 - Bender

Modbus Register Map

Tab. 10.17: Min log of this month

1) Register 2372…2377 are valid only if the device is equipped with the I4 input, otherwise it is reserved.

2444…2449 RO k-factor I1

see table 10.20

x10

2450…2455 RO k-factor I2 x10

2456…2461 RO k-factor I3 x10

2462…2467 RO min. voltage unbalance x1,000

2468…2473 RO min. current unbalance x1,000

Register Property Description Format Factor/unit

111PEM575_D00016_01_M_XXEN/05.2016

Page 112: PEM575 - Bender

Modbus Register Map

10.8.3 Max log of last month

Register Property Description Format Factor/unit

2600…2605 RO UL1 max

see table 10.20

x 100, V

2606…2611 RO UL2 max x 100, V

2612…2617 RO UL3 max x 100, V

2618…2623 RO Ø ULN max x 100, V

2624…2629 RO UL1L2 max x 100, V

2630…2635 RO UL2L3 max x 100, V

2636…2641 RO UL3L1 max x 100, V

2642…2647 RO Ø ULL max x 100, V

2648…2653 RO I1 max x 1,000, A

2654…2659 RO I2 max x 1,000, A

2660…2665 RO I3 max x 1,000, A

2666…2671 RO Ø I max x 1,000, A

2672…2677 RO I4 max 1) or reserved x 1,000, A

2678…2683 RO Pges max W

2684…2689 RO Qges max var

2690…2695 RO Sges max VA

2696…2701 RO λges max x 1,000

2702…2707 RO f max x 100, Hz

2708…2713 RO THDUL1 max x 10,000

2714…2719 RO THDUL2 max x 10,000

2720…2725 RO THDUL3 max x 10,000

112 PEM575_D00016_01_M_XXEN/05.2016

Page 113: PEM575 - Bender

Modbus Register Map

Tab. 10.18: Max log of last month

1) Register 2672…2677 are valid only if the device is equipped with the I4 input, otherwise it is reserved.

2726…2731 RO THDI1 max

see table 10.20

x 10,000

2732…2737 RO THDI2 max x 10,000

2738…2743 RO THDI3 max x 10,000

2744…2749 RO k-factor I1 x10

2750…2755 RO k-factor I2 x10

2756…2761 RO k-factor I3 x10

2762…2767 RO max. voltage unbalance x1,000

2768…2773 RO max. current unbalance x1,000

Register Property Description Format Factor/unit

113PEM575_D00016_01_M_XXEN/05.2016

Page 114: PEM575 - Bender

Modbus Register Map

10.8.4 Min log last month

Register Property Description Format Factor/unit

2900…2905 RO UL1 min

see table 10.20

x 100, V

2906…2911 RO UL2 min x 100, V

2912…2917 RO UL3 min x 100, V

2918…2923 RO Ø ULN min x 100, V

2924…2929 RO UL1L2 min x 100, V

2930…2935 RO UL2L3 min x 100, V

2936…2941 RO UL3L1 min x 100, V

2942…2947 RO Ø ULL min x 100, V

2948…2953 RO I1 min x 1,000, A

2954…2959 RO I2 min x 1,000, A

2960…2965 RO I3 min x 1,000, A

2966…2971 RO Ø I min x 1,000, A

2972…2977 RO I4 min 1) or reserved x 1,000, A

2978…2983 RO Pges min W

2984…2989 RO Qges min var

2990…2995 RO Sges min VA

2996…3001 RO λges min x 1,000

3002…3007 RO f min x 100, Hz

3008…3013 RO THDUL1 min x 10,000

3014…3019 RO THDUL2 min x 10,000

3020…3025 RO THDUL3 min x 10,000

114 PEM575_D00016_01_M_XXEN/05.2016

Page 115: PEM575 - Bender

Modbus Register Map

Tab. 10.19: Minimum log of last month

1) Register 2972…2977 are valid only if the device is equipped with the I4 input, otherwise it is reserved.

10.8.5 Max/Min log data structure

Tab. 10.20: Max/Min log data structure

3026…3031 RO THDI1 min

see table 10.20

x 10,000

3032…3037 RO THDI2 min x 10,000

3038…3043 RO THDI3 min x 10,000

3044…3049 RO k-factor I1 x10

3050…3055 RO k-factor I2 x10

3056…3061 RO k-factor I3 x10

3062…3067 RO min. voltage unbalance x1,000

3068…3073 RO min. current unbalance x1,000

Offset Property Description Format Note

+ 0 RO Max resp. Min value INT32

+ 2RO HiWord: Year

UINT161…99 (year-2000)

RO LoWord: Month 1…12

+ 3RO HiWord: Date: Day

UINT161…28/29/30/31

RO LoWord: Hour 0…23

+ 4RO HiWord: Minute

UINT160…59

RO LoWord: Second 0…59

+ 5 RO Millisecond UINT16 0…999

Register Property Description Format Factor/unit

115PEM575_D00016_01_M_XXEN/05.2016

Page 116: PEM575 - Bender

Modbus Register Map

10.9 Setup parameters

Register Property Description Format Range/unit

6000 RW Voltage transformation ratio UINT161*…10,000

6001 RWMeasuring current transformer transformation ratio

UINT16

1*…6,000 (current input 5 A) 1*…30,000(current input 1 A)

6002 RWMeasuring current transformer transformation ratio I4

UINT161…10,000(2*)

6003 RW Wiring mode UINT160 = WYE*1 = DELTA 2 = DEMO

6004 RW Unom UINT16 100*…700 V (ULL)

6005 RW fnom UINT160 = 50 Hz*1 = 60 Hz

6006 RW Port 1 protocol (RS-485) UINT160* = Modbus1 = EGATE

6007 RW Port 1, device address (RS-485) UINT161…247 (100*)

6008 RW Port 1, baud rate (RS-485) UINT16

0 = 1200 1 = 2400 2 = 4800 3 = 9600* 4 = 192005 = 38,400

6009 RW Port 1, parity (RS-485) UINT160 = 8N2; 1 = 8O1 2 = 8E1* ; 3 = 8N1 4 = 8O2 ; 5 = 8E2

6010…6012 Reserved

6013 RW IP address UINT32

192.168.8.97*Contents of register for factory setting:0xC0A80861

116 PEM575_D00016_01_M_XXEN/05.2016

Page 117: PEM575 - Bender

Modbus Register Map

6015 RW Subnet mask UINT32

288.255.255.0*Contents of register for factory setting:0xFFFFFF00

6017 RW Gateway address UINT32

192.168.8.1* Con-tents of register for factory setting:0x0A80801

6019 RW Power factor λ rule UINT160* = IEC 1 = IEEE 2 = -IEEE

6020 RW Calculation method S UINT160* = vector 1 = scalar

6021 RW Synchronisation demand UINT160* = SLD1 = SYNC DI

6022 RW Demand period UINT161…99 minutes(15*)

6023 RW Demand cycles (sliding windows) UINT16 1*…15

6024 RW Predicted demand sensitivity UINT16 70*…99

6025 RW Function DI1 UINT16

0 = digital input1 = pulse counter2 = SYNC DI3 = PPS

6026 RW Function DI2 UINT16

6027 RW Function DI3 UINT16

6028 RW Function DI4 UINT16

6029 RW Function DI5 UINT16

6030 RW Function DI6 UINT16

6031 RW Debounce time DI1 UINT16

1…1,000 ms (20*)

6032 RW Debounce time DI2 UINT16

6033 RW Debounce time DI3 UINT16

6034 RW Debounce time DI4 UINT16

6035 RW Debounce time DI5 UINT16

6036 RW Debounce time DI6 UINT16

Register Property Description Format Range/unit

117PEM575_D00016_01_M_XXEN/05.2016

Page 118: PEM575 - Bender

Modbus Register Map

6037 RW Resolution of setting DI1 UINT32

1*…1.000.000

6039 RW Resolution of setting DI2 UINT32

6041 RW Resolution of setting DI3 UINT32

6043 RW Resolution of setting DI4 UINT32

6045 RW Resolution of setting DI5 UINT32

6047 RW Resolution of setting DI6 UINT32

6049 RW Function DO1 UINT16

0*= digital output6050 RW Function DO2 UINT16

6051 RW Function DO3 UINT16

6052 RW Pulse width DO1 UINT16 0…999 (x 0.1 s)0 = Latch mode(10*)

6053 RW Pulse width DO2 UINT16

6054 RW Pulse width DO3 UINT16

6055…6065 Reserved

6066 RWPolarity measuring current trans-former L1

UINT160* = normal1 = reversed

6067 RWPolarity measuring current trans-former L2

UINT160* = normal 1 = reversed

6068 RWPolarity measuring current trans-former L3

UINT160* = normal 1 = reversed

6069 RWCalculation method harmonic distortion***

UINT160 = Fundamental1*= RMS

6070 RW Enable energy pulsing UINT160*= disable1 = enable

6071 RW Pulse constant UINT160 = 1,000 imp/kxh1 = 3200 imp/kxh2* = 5000 imp/kxh

6072 Reserved

6073 RWEnable undervoltage/overvol-tage

UINT160*= disable1 = enable

6074 RW Overvoltage limit UINT16105*…200 (x 0.01 Unom)

Register Property Description Format Range/unit

118 PEM575_D00016_01_M_XXEN/05.2016

Page 119: PEM575 - Bender

Modbus Register Map

6075 RW Undervoltage limit UINT1611…95 (x 0.01 Unom)(70*)

6076 RWTrigger 1 undervoltage/overvoltage

UINT160*= none1…3 = DO1…DO4…19=DR1…DR1620 = WFR121 = WFR222 = reserved

6077 RWTrigger 2 undervoltage/overvoltage

UINT16

6078 RW Enable SNTP UINT160*= disable1 = enable

6079 RW Time zone UINT16 0…32 (26*)

6080 RW Synchronisation interval SNTP UINT1610…1440 (min) (60*)

6081 RW IP address of time server

192.168.8.94*Contents of register for factory setting:0xC0A8085E

6083…6177 RW Reserved

6178 RW Enable transient events UINT160*= disable1 = enable

6179 RW Limit for transient events UINT165…100 (x 0.01 Unom)(50*)

6180 RW Trigger 1 for transient events UINT16 0*= none1…3 = DO1…DO4…19 = DR1…DR1620 = WFR121 = WFR222 = reserved

6181 RW Trigger 2 for transient events UINT16

6182 RW Reserved

6183 RW Backlight timeout UINT160 = Display always bright1…60 min (3*)

6184…6188 Reserved

Register Property Description Format Range/unit

119PEM575_D00016_01_M_XXEN/05.2016

Page 120: PEM575 - Bender

Modbus Register Map

Tab. 10.21: Setup parameters

Notes table 10.21:Register 6000 and 6001

Current input 5 A: Transformation ratio current x transformation ratio voltage < 1,000,000Current input 1 A: Transformation ratio current x transformation ratio voltage < 5,000,000

Register 6078 is disabled if not equipped with an Ethernet port

120 PEM575_D00016_01_M_XXEN/05.2016

Page 121: PEM575 - Bender

Modbus Register Map

Register 6079: Time zones without summertime

10.10 Clear/reset register

CODE Time zone CODE Time zone

0 GMT – 12 h 17 GMT + 03:30 h

1 GMT - 11 h 18 GMT + 04 h

2 GMT - 10 h 19 GMT + 04:30 h

3 GMT - 09 h 20 GMT + 05 h

4 GMT - 08 h 21 GMT + 05:30 h

5 GMT - 07 h 22 GMT + 05:45 h

6 GMT - 06 h 23 GMT + 06 h

7 GMT - 05 h 24 GMT + 06:30 h

8 GMT - 04 h 25 GMT + 07 h

9 GMT - 03 h 26 GMT + 08 h

10 GMT – 03:30 h 27 GMT + 09 h

11 GMT - 02 h 28 GMT + 09:30 h

12 GMT - 01 h 29 GMT + 10 h

13 GMT 30 GMT + 11 h

14 GMT + 01 h 31 GMT + 12 h

15 GMT + 02 h 32 GMT + 13 h

16 GMT + 03 h

Register Property Description Format Unit

6400 WO Manual WFR1 Trigger UINT16 Writing 0xFF00 to the register triggers the respective waveform recorder

6401 WO Manual WFR2 Trigger UINT16

6402 WO Clear DR1 (high speed) UINT16Writing 0xFF00 to the register clears the res-pective DR

121PEM575_D00016_01_M_XXEN/05.2016

Page 122: PEM575 - Bender

Modbus Register Map

Tab. 10.22: Clear/reset register

6403 WO Clear DR2 (high speed) UINT16

Writing 0xFF00 to the register clears the res-pective DR

6404 WO Clear DR3 (high speed) UINT16

6405 WO Clear DR4 (high speed) UINT16

6406 WO Clear DR5 (standard) UINT16

6416 WO Clear DR15 (standard) UINT16

6417 WO Clear DR16 (standard) UINT16

6418 WO Clear WFR1 UINT16

Writing 0xFF00 to the register clears the res-pective log

6419 WO Clear WFR2 UINT16

6420 WO Clear energy log UINT16

6421 WO Clear PQ log UINT16

6422 WO Clear event log UINT16

6423 WO Clear energy register UINT16

6424 WO Clear Max/Min log of this month

UINT16

6425 WO Clear peak demand log of this month

UINT16

6426 WO Clear counter DI1 UINT16

Writing 0xFF00 to the register clears the res-pective counter

6427 WO Clear counter DI2 UINT16

WO … UINT16

6430 WO Clear counter DI5 UINT16

6431 WO Clear counter DI6 UINT16

6432…6436 Reserved

6437 WO Clear all logs(registers 6400…6431)

UINT16Writing 0xFF00 to the register clears all logs mentioned above

Register Property Description Format Unit

122 PEM575_D00016_01_M_XXEN/05.2016

Page 123: PEM575 - Bender

Modbus Register Map

10.11 Setpoint setup parameters

Tab. 10.23: Setpoints

Register Property Description Format

6600…6609 RW Setpoint 1 (standard)

Chapter 10.11.1 Struc-ture of the setpoint register (standard)

6610…6619 RW Setpoint 2 (standard)

6620…6629 RW Setpoint 3 (standard)

6630…6639 RW Setpoint 4 (standard)

6640…6649 RW Setpoint 5 (standard)

6650…6659 RW Setpoint 6 (standard)

6660…6669 RW Setpoint 7 (standard)

6670…6679 RW Setpoint 8 (standard)

6680…6689 RW Setpoint 9 (standard)

6690…6699 RW Setpoint 10 (standard)

6700…6709 RW Setpoint 11 (standard)

6710…6719 RW Setpoint 12 (standard)

6720…7629 RW Setpoint 13 (standard)

6730…6739 RW Setpoint 14 (standard)

6740…6749 RW Setpoint 15 (standard)

6750…6759 RW Setpoint 16 (standard)

6760…6769 RW Setpoint 17 (highspeed)

Chapter 10.11.2 Set-point register structure (high speed)

6770…6779 RW Setpoint 18 (highspeed)

6780…6789 RW Setpoint 19 (highspeed)

6790…6799 RW Setpoint 20 (highspeed)

6800…6809 RW Setpoint 21 (highspeed)

6810…6819 RW Setpoint 22 (highspeed)

6820…6829 RW Setpoint 23 (highspeed)

6830…6839 RW Setpoint 24 (highspeed)

123PEM575_D00016_01_M_XXEN/05.2016

Page 124: PEM575 - Bender

Modbus Register Map

10.11.1 Structure of the setpoint register (standard)

Tab. 10.24: Setpoint register structure (standard)

10.11.2 Setpoint register structure (high speed)

Tab. 10.25: Setpoint register structure (high speed)

Offset Property Description Format Unit

0 RW Type UINT160 = disabled1 = over setpoint2 = under setpoint

+1 RW Measured quantity1) UINT16 1*…31

+2 RW Active limit INT32 5000*

+4 RW Inactive limit INT32 1,000*

+6 RW Active delay UINT16 0…9,999 s(1*)

+7 RW Inactive delay UINT16 0…9,999 s(1*)

+8 RW Trigger 1 2) UINT16 0…22 (1*)

+9 RW Trigger 2 2) UINT16 0…22 (2*)

Offset Property Description Format Unit

0 RW Type UINT160 = disabled1 = over setpoint2 = under setpoint

+1 RW Measured Quantity1) UINT16 1*…14

+2 RW Active limit INT32 5000*

+4 RW Inactive limit INT32 1,000*

+6 RW Active delay UINT16 0…9,999 cycles (1*)

+7 RW Inactive delay UINT16 0…9,999 cycles (1*)

+8 RW Trigger 1 2) UINT16 0…22 (1*)

+9 RW Trigger 2 2) UINT16 0…22 (2*)

124 PEM575_D00016_01_M_XXEN/05.2016

Page 125: PEM575 - Bender

Modbus Register Map

Notes table 10.24 and table 10.25:1) Measured quantity: "Measured quantity" specifies the parameter to be monitored. The following

measured quantities can be set:

Setpoint parameter "Measured quantity"

Key Measured quantity Scale/unit

1 ULN x 100, V

2 ULL x 100, V

3 I x 1,000, A

4 I4 x 1,000, A

5 fΔn x 100, Hz

6 Pges kW

7 Qges kvar

8 λ x1,000

9 DI1Over setpoint:

active limit will close DI (DI = 1),inactive limit will open DI (DI = 0)

Under setpoint: active limit will open DI (DI = 0),inactive limit will close DI (DI = 1)

10 DI2

11 DI3

12 DI4

13 DI5

14 DI6

15 Reserved

16 Demand Pges kW

17 Demand Qges kvar

18 Demand λ x1,000

19 Predicted demand Pges kW

20 Predicted demand Qges kvar

21 Predicted demand λ x1,000

22 THDU x 10,000

23 TOHDU x 10,000

24 TEHDU x 10,000

125PEM575_D00016_01_M_XXEN/05.2016

Page 126: PEM575 - Bender

Modbus Register Map

Tab. 10.26: Setpoint parameter

2) Trigger

The trigger specifies what action the setpoint will take when it becomes active.

Tab. 10.27: Setpoint trigger

25 THDI x 10,000

26 TOHDI x 10,000

27 TEHDI x 10,000

28 Unbalance U x1,000

29 Unbalance I x1,000

30 Deviation U x 10,000

31 Phase reversal

Over setpoint: active limit at negative phase sequence;inactive limit at positive phase sequenceUnder setpoint:active limit at positive phase sequence;inactive limit at negative phase sequence

Key Action Key Action Key Action

0 — 8 DR5 16 DR13

1 DO1 9 DR6 17 DR14

2 DO2 10 DR7 18 DR15

3 DO3 11 DR8 19 DR16

4 DR1 12 DR9 20 WFR1

5 DR2 13 DR10 21 WFR2

6 DR3 14 DR11 22 Reserved

7 DR4 15 DR12

Key Measured quantity Scale/unit

126 PEM575_D00016_01_M_XXEN/05.2016

Page 127: PEM575 - Bender

Modbus Register Map

10.12 Logic module

10.12.1 Logic module registers

Tab. 10.28: Logic module register

10.12.2 Logic module data structure

Tab. 10.29: Logic module data structure

Register Property Description Format

6840…6849 RW Logic module 1

table 10.29

6850…6859 RW Logic module 2

6860…6869 RW Logic module 3

6870…6879 RW Logic module 4

6880…6889 RW Logic module 5

6890…6899 RW Logic module 6

Offset Property Description Format Range/options

+ 0 RW Enable logic module UINT160* = disabled1 = enabled

+ 1 RW Mode 1 UINT16 0*= AND1 = OR2 = NAND3 = NOR

+ 2 RW Mode 2 UINT16

+ 3 RW Mode 3 UINT16

+4 RW Source 1 1) UINT16 0…24 (1*)

+5 RW Source 2 1) UINT16 0…24 (2*)

+ 6 RW Source 3 1) UINT16 0…24 (3*)

+ 7 RW Source 4 1) UINT16 0…24 (4*)

+ 8 RW Trigger 1 UINT16 0…21 (1*)

+ 9 RW Trigger 1 UINT16 0…21 (0*)

127PEM575_D00016_01_M_XXEN/05.2016

Page 128: PEM575 - Bender

Modbus Register Map

Notes: table 10.291) A logic module can have up to four source inputs. The following table provides a list of logic

module sources:

Tab. 10.30: Sources for logic modules

2) Triggers of logic modules

The trigger specifies what action the setpoint will take when it becomes active.

Tab. 10.31: Trigger logic module

Key Source Key Source

0 — 13 Setpoint 13 (standard)

1 Setpoint 1 (standard) 14 Setpoint 14 (standard)

2 Setpoint 2 (standard) 15 Setpoint 15 (standard)

3 Setpoint 3 (standard) 16 Setpoint 16 (standard)

4 Setpoint 4 (standard) 17 Setpoint 17 (highspeed)

5 Setpoint 5 (standard) 18 Setpoint 18 (highspeed)

6 Setpoint 6 (standard) 19 Setpoint 19 (highspeed)

7 Setpoint 7 (standard) 20 Setpoint 20 (highspeed)

8 Setpoint 8 (standard) 21 Setpoint 21 (highspeed)

9 Setpoint 9 (standard) 22 Setpoint 22 (highspeed)

10 Setpoint 10 (standard) 23 Setpoint 23 (highspeed)

11 Setpoint 11 (standard) 24 Setpoint 24 (highspeed)

12 Setpoint 12 (standard) — —

Key Action Key Action Key Action

0 — 8 DR5 16 DR13

1 DO1 9 DR6 17 DR14

2 DO2 10 DR7 18 DR15

3 DO3 11 DR8 19 DR16

4 DR1 12 DR9 20 WFR1

5 DR2 13 DR10 21 WFR 2

6 DR3 14 DR11

7 DR4 15 DR12

128 PEM575_D00016_01_M_XXEN/05.2016

Page 129: PEM575 - Bender

Modbus Register Map

10.13 Data recorder (DR)

10.13.1 Data recorder register

Register Property Description Format

7000…7022 RW Data recorder 1 (DR1, high speed)

table 10.33 7023…7045 RW Data recorder 2 (DR2, high speed)

7046…7068 RW Data recorder 3 (DR3, high speed)

7069…7091 RW Data recorder 4 (DR4, high speed)

7092…7114 RW Data recorder 5 (DR5, standard)

table 10.34

7115…7137 RW Data recorder 6 (DR6, standard)

7138…7160 RW Data recorder 7 (DR7, standard)

7161…7138 RW Data recorder 8 (DR8, standard)

7134…7206 RW Data recorder 9 (DR9, standard)

7107…7229 RW Data recorder 10 (DR10, standard)

7230…7252 RW Data recorder 11 (DR11, standard)

7253…7275 RW Data recorder 12 (DR12, standard)

7276…7298 RW Data recorder 13 (DR13, standard)

7299…7321 RW Data recorder 14 (DR14, standard)

7322…7344 RW Data recorder 15 (DR15, standard)

7345…7367 RW Data recorder 16 (DR16, standard)

7368 RO DR1record size (bytes) UINT16

7369 RO DR2 record size (bytes) UINT16

7370 RO DR3 record size (bytes) UINT16

7371 RO DR4 record size (bytes) UINT16

7372 RO DR5 record size (bytes) UINT16

7373 RO DR6 record size (bytes) UINT16

7374 RO DR7 record size (bytes) UINT16

7375 RO DR8 record size (bytes) UINT16

7376 RO DR9 record size (bytes) UINT16

7377 RO DR10 record size (bytes) UINT16

7378 RO DR11 record size (bytes) UINT16

129PEM575_D00016_01_M_XXEN/05.2016

Page 130: PEM575 - Bender

Modbus Register Map

Tab. 10.32: Data recorder registers

10.13.2 High-speed data recorder register structure

7379 RO DR12 record size (bytes) UINT16

7380 RO DR13 record size (bytes) UINT16

7381 RO DR14 record size (bytes) UINT16

7382 RO DR15 record size (bytes) UINT16

7383 RO DR16 record size (bytes) UINT16

Offset Property Description Format Range/options

+ 0 RW Trigger mode 1) UINT160* = disabled1 = triggered by timer2 = triggered by setpoint

+ 1 RW Recording mode 2) UINT16 0*= stop-when-full

+ 2 RW Recording depth UINT16 0*…65535

+ 3 RW Recording interval UINT32 1…60 (2*) cycles

+ 5 RW Recording delay 3) UINT16 0*…43200 s

+ 6 RWNumber of measured quantities 4) UINT16 0…16*

+ 7 RW Measured Quantity 1 UINT16 0*…28

+ 8 RW Measured Quantity 2 UINT16 0*…28

+ 9 RW Measured Quantity 3 UINT16 0*…28

+ 10 RW Measured Quantity 4 UINT16 0*…28

+ 11 RW Measured Quantity 5 UINT16 0*…28

+ 12 RW Measured Quantity 6 UINT16 0*…28

+ 13 RW Measured Quantity 7 UINT16 0*…28

+ 14 RW Measured Quantity 8 UINT16 0*…28

+ 15 RW Measured Quantity 9 UINT16 0*…28

+ 16 RW Measured Quantity 10 UINT16 0*…28

Register Property Description Format

130 PEM575_D00016_01_M_XXEN/05.2016

Page 131: PEM575 - Bender

Modbus Register Map

Tab. 10.33: High-speed data recorder register structure

Notes: table 10.33

1) High-speed data recorders can be triggered by a timer (the internal clock) or a setpoint. In trigger mode 2 when the setpoint goes active, the recorder starts to record, and when the setpoint becomes inactive, the data recorder stops.

2) For high-speed data recorders, the recording mode only supports stop-when-full without overwriting other data.

3) Recording delay: The delay in seconds is specified when a measurement is to be started in Trigger mode 1 (triggered by timer). Example: When the delay is set to "300", the measure-ment will start 300 s (= 5 minutes) after the timer period has elapsed. In order to obtain eval-uable results, the programmed value of the recording delay parameter should be less than that of the recording interval parameter. For Trigger mode 2, recording offset is ignored.

4) For high-speed data recorders only the parameters 0…28 from table 8.3.2 can be used.

+ 17 RW Measured Quantity 11 UINT16 0*…28

+ 18 RW Measured Quantity 12 UINT16 0*…28

+ 19 RW Measured Quantity 13 UINT16 0*…28

+ 20 RW Measured Quantity 14 UINT16 0*…28

+ 21 RW Measured Quantity 15 UINT16 0*…28

+ 22 RW Measured Quantity 16 UINT16 0*…28

The data recorder only becomes active, if the offset entries +1, +2, +3and +6 marked in the table are non-zero!

Modifying an offset parameter will clear the DR log and reset the pointer to 0.

Offset Property Description Format Range/options

131PEM575_D00016_01_M_XXEN/05.2016

Page 132: PEM575 - Bender

Modbus Register Map

10.13.3 Standard data recorder register structure

Tab. 10.34: Standard data recorder register structure

Offset Property Description Format Range/options

+ 0 RW Trigger mode 1) UINT160* = disabled1 = triggered by timer2 = triggered by setpoint

+ 1 RW Recording mode UINT160*= stop-when-full1 = FIFO (First-In-First-Out)

+ 2 RW Recording depth UINT16 0…65,535 (5,760*)

+ 3 RW Recording interval UINT32 1…3,456,000 s (900*)

+ 5 RW Recording delay 2) UINT16 0*…43,200 s

+ 6 RWNumber of measured quantities 3) UINT16 0…16*

+ 7 RW Measured Quantity 1 UINT16 0*…328

+ 8 RW Measured Quantity 2 UINT16 0*…328

+ 9 RW Measured Quantity 3 UINT16 0*…328

+ 10 RW Measured Quantity 4 UINT16 0*…328

+ 11 RW Measured Quantity 5 UINT16 0*…328

+ 12 RW Measured Quantity 6 UINT16 0*…328

+ 13 RW Measured Quantity 7 UINT16 0*…328

+ 14 RW Measured Quantity 8 UINT16 0*…328

+ 15 RW Measured Quantity 9 UINT16 0*…328

+ 16 RW Measured Quantity 10 UINT16 0*…328

+ 17 RW Measured Quantity 11 UINT16 0*…328

+ 18 RW Measured Quantity 12 UINT16 0*…328

+ 19 RW Measured Quantity 13 UINT16 0*…328

+ 20 RW Measured Quantity 14 UINT16 0*…328

+ 21 RW Measured Quantity 15 UINT16 0*…328

+ 22 RW Measured Quantity 16 UINT16 0*…328

132 PEM575_D00016_01_M_XXEN/05.2016

Page 133: PEM575 - Bender

Modbus Register Map

Notes: table 10.34

1) The standard data recorder can be triggered by a Timer (the internal clock) or by Setpoint. In trigger mode 2 when the setpoint goes active, the recorder starts to record, and when the setpoint becomes inactive, the data recorder stops.

2) Recording delay: In Trigger mode 1, a fixed time can be set in seconds to delay the start of the measurement (triggered by timer). Example: When the delay is set to "300", the measure-ment will start 300 s (= 5 minutes) after the timer period has elapsed. In order to obtain eval-uable results, the programmed value of the recording delay parameter should be less than that of the recording interval parameter. For Trigger mode 2, recording delay is ignored.

3) For standard data recorders all the measured quantities 0…328 from table 8.3.2 can be used.

10.14 Waveform recording (WFR)The PEM575 provides two waveform recorders capable of recording waveforms independently from one another (waveform recorder WFR1 and WFR2). The total capacity of WRF 1 and WFR 2 is 32.

The data recorder is only operational when the offset entries +1, +2, +3and +6 are all non-zero!

Modifying an offset parameter will clear the DR log and reset the pointerto 0.

133PEM575_D00016_01_M_XXEN/05.2016

Page 134: PEM575 - Bender

Modbus Register Map

Each waveform recorder can simultaneously record 3-phase voltage and current signals at a maximum resolution of 256 samples per cycle.

Tab. 10.35: Waveform recording register

Notes on table 10.35: 1) The total capacity of the waveform recorders is 32, i.e. the total of the number of measure-

ments in WFR 1 WFR 2 must be ≤ 32. The waveform recorder is disabled when register 7600 is set to 0.

2) Valid WFR formats (number of samples/cycle x number of cycles) are 16 x 320, 32 x 160, 64 x 80, 128 x 40 and 256 x 20.

3) When the WFR format is 256 x 20, the number of pre-fault cycles is 0…5, otherwise the range is 0…10.

Register Property Description Format

7600 RW

WFR 1

Number of measurements 1) 0*…32

7601 RW Number of samples 2)

0 = 161 = 32 2 = 643 = 1284*= 256

7602 RW Number of cycles 2) 320 / 160 / 80 / 40 / 20 / 10*

7603 RW Number of cycles before the event 0*…10

7604 RW

WFR2

Recording depth 1) 0*…32

7605 RW Number of samples 2)

0*= 161 = 32 2 = 643 = 1284= 256

7606 RW Number of cycles 2) 320* / 160 / 80 / 40 / 20

7607 RW Pre-fault cycles 3) 0*…10

Modifying any of the registers 7600…7607 will clear the WFR log andreset the pointer to 0.

134 PEM575_D00016_01_M_XXEN/05.2016

Page 135: PEM575 - Bender

Modbus Register Map

Waveform recorder data structure (WFR log)

The waveform recorder data contains the values of the secondary side. The voltage data returned is 10 times of the actual secondary voltage and the current data is 1,000 times of the actual secondary current. The voltage and current values of the primary side are calculated as follows:Uprimary = Usecondary x voltage transformer transformation ratio/10Iprimary = Isecondary x CT transformation ratio/1,000

Tab. 10.36: Waveform recorder data structure

N# = number of sample (1…N)

Offset Property Description Format Range/options

+ 0 RO Trigger mode UINT16

0*= disabled1 = manual2 = Setpoint3 = Sag/swell

+ 1RO HiWord: Year

UINT160…99 (year- 2000)

RO LoWord: month 1…12

+ 2RO HiWord: Date: Day

UINT161…31

RO LoWord: Hour 1…23

+ 3RO HiWord: Minute

UINT160…59

RO LoWord: Second 0…59+ 4 RO Millisecond UINT16 0…999

+ 5…N+4 RO UL1 of sample N# UINT16 x 10, V

N+5…2N+4 RO UL2 of sample N# UINT16 x 10, V

2N+5…3N+4 RO UL3 of sample N# UINT16 x 10, V

3N+5…4N+4 RO I1 of sample N# UINT16 x 1,000, A

4N+5…5N+4 RO I2 of sample N# UINT16 x 1,000, A

5N+5…6N+4 RO I3 of sample N# UINT16 x 1,000, A

135PEM575_D00016_01_M_XXEN/05.2016

Page 136: PEM575 - Bender

Modbus Register Map

10.15 Energy log

Tab. 10.37: Energy log registers

table 10.37: Notes:1) Writing "Number of measurements = 0" will disable the energy log.

Register Property Description Format Range/options

7700 RW Recording mode UINT160*= disabled1 = stop-when-full2 = FIFO

7701 RW Number of measurements1) UINT16 0…65535 (5760*)

7702 RW Recording interval UINT16

0 = 5 min1 = 10 min2*= 15 min3 = 30 min4 = 60 min

7703 RW

Start-up time2)

HiWord: YearUINT16

0…99 (year- 2000)

LoWord: month 1…12

7704 RWHiWord: Date: Day

UINT161…31

LoWord: Hour 1…23

7705 RWHiWord: Minute

UINT160…59

LoWord: Second 0…59

7706 RW Number of parameters (N) UINT16 0…5*

7707 RW Parameter 1 UINT16 0 = active energy import1 = active energy export2 = reactive energy import3 = reactive energy export4 = apparent energy

0*

7708 RW Parameter 2 UINT16 1*

7709 RW Parameter 3 UINT16 2*

7710 RW Parameter 4 UINT16 3*

7711 RW Parameter 5 UINT16 4*

7712 RO Data record size UINT16 Unit: bytes

136 PEM575_D00016_01_M_XXEN/05.2016

Page 137: PEM575 - Bender

Modbus Register Map

2) When the current time meets or exceeds the start-up time, the energy log starts to record.

Energy log data structure

Tab. 10.38: Energy log data structure

Modifying any of the registers 7701…7711 will clear the Energy log andreset the pointer to 0.

Offset Property Description Format Range/options

+0 RO Parameter 1 INT32

+2 RO Parameter 2 INT32

… RO … INT32

+2N ROParameter N (N = 0…5)

INT32

+2N+1 ROHiWord: Year

UINT160…99 (year - 2000)

LoWord: month 1…12

+2N+2 ROHiWord: Date: Day

UINT161…31

LoWord: Hour 1…23

+2N+3 ROHiWord: Minute

UINT160…59

LoWord: Second 0…59

+2N+4 RO Millisecond UINT16 0…999

137PEM575_D00016_01_M_XXEN/05.2016

Page 138: PEM575 - Bender

Modbus Register Map

10.16 PQ log

PQ log data structure

Tab. 10.39: PQ log data structure

Offset Property Description Format

0…7 RO PQ log 1

see table 10.39

8…15 RO PQ log 2

16…23 RO PQ log 3

… RO …

7992…7999 RO PQ log 1,000

Offset Property Description Format Range/options

+ 0 RO Reserved UINT16

+ 1RO HiWord: Classification

RO LoWord: sub classification 1)

+ 2RO HiWord: Year

UINT160…99 (year – 2000)

RO LoWord: month 1…12

+ 3RO HiWord: Date: Day

UINT161…31

RO LoWord: Hour 1…23

+ 4 RO HiWord: Minute

UINT160…59

RO LoWord: Second 0…59

+ 5 RO Millisecond UINT16 0…999

+ 6 4) RO max. disturbance ULN2) / max. transient ULN

3) INT32 x 100, %

+ 8 RO Duration μs

+ 10 RO max. disturbance UL12) / max. transient UL1

3) INT32 x 100, %

+ 12 RO max. disturbance UL22) / max. transient UL2

3) INT32 x 100, %

+ 14 RO max. disturbance UL32) / max. transient UL3

3) INT32 x 100, %

138 PEM575_D00016_01_M_XXEN/05.2016

Page 139: PEM575 - Bender

Modbus Register Map

Notes table 10.39: 1) The PQ log classification is "7".

The following sub classifications are used:

2) Sag/swell inactive value: max. value of disturbance ULx ULx = ((ULx max - ULx nenn) / ULx nenn ) x 100 % (with Lx = L1…L3)

Max. disturbance ULN is the maximum value of max. disturbance ULx

3) Transient events: ULx transient max = (ULx max / Unenn) x 100 % (with Lx = L1…L3)

Max. ULN transient is the maximum value of ULx transient

4) For sag/swell events, the offsets + 6…+ 14 are reserved.

10.17 Event log (SOE log)Each SOE event occupies 8 registers, as shown in the following table. The internal data structure of the event log is listed in table 10.41.

Sub classification Description

1 Start: sag/swell event

2 End: sag/swell event

3 Transient event

139PEM575_D00016_01_M_XXEN/05.2016

Page 140: PEM575 - Bender

Modbus Register Map

10.17.1 Energy log register

Tab. 10.40: Event log (SOE log)

10.17.2 Event log data structureThe following table describes the internal data structure of the 8 registers which belong to each event in the SOE log.

Register Property Description Format

10000…10007 RO Event 1

see table 10.41

10008…10015 RO Event 2

10016…10023 RO Event 3

10024…10031 RO Event 4

10032…10039 RO Event 5

10040…10047 RO Event 6

10048…10055 RO Event 7

10056…10063 RO Event 8

10064…10071 RO Event 9

10072…10079 RO Event 10

10080…10087 RO Event 11

14088…14095 RO Event 512

Offset Property Description Format

+ 0 RO Reserved UINT16

+ 1 ROHiWord: Event classificationLoWord: Sub classification (refer to page 141)

UINT16

+ 2 ROHiWord: Year-2000LoWord: Month (1…12)

UINT16

+ 3 ROHiWord: Day (0…31)LoWord: Hour (1…23)

UINT16

140 PEM575_D00016_01_M_XXEN/05.2016

Page 141: PEM575 - Bender

Modbus Register Map

Tab. 10.41: Event data structure

10.17.3 Event classification (SOE log)

+ 4 ROHiWord: M inute (0…59)LoWord: Second (0…59)

UINT16

+ 5 RO Millisecond (0…999) UINT16

+ 6 RO Event value INT32

Event classification

Event sub classification

Event valueUnit

OptionDescription

1

1 1/0 DI1 close/open

2 1/0 DI2 close/open

3 1/0 DI3 close/open

4 1/0 DI4 close/open

5 1/0 DI5 close/open

6 1/0 DI6 close/open

2

11/0

DO 1 close/open by communications interface

21/0

DO2 close/open by communications interface

31/0

DO3 close/open by communications interface

4 1/0 DO1 close/open by setpoint

5 1/0 DO2 close/open by setpoint

6 1/0 DO3 close/open by setpoint

71/0

DO1 close/open by undervoltage/over-voltage

81/0

DO2 close/open by undervoltage/over-voltage

91/0

DO3 close/open by undervoltage/over-voltage

Offset Property Description Format

141PEM575_D00016_01_M_XXEN/05.2016

Page 142: PEM575 - Bender

Modbus Register Map

2

10 1/0 DO1 close/open by transient event

11 1/0 DO2 close/open by transient event

12 1/0 DO3 close/open by transient event

3

1 Trigger value x 100

>-Setpoint ULN exceeded

2 Trigger value x 100

>-Setpoint ULL exceeded

3 Trigger value x 1000

>-Setpoint I exceeded

4 Trigger value x 1000

>-Setpoint I4 exceeded

5 Trigger value x 100

>-Setpoint Δf exceeded

6 Trigger value >-Setpoint Pges exceeded

7 Trigger value >-Setpoint Qges exceeded

8 Trigger value x 1000

>-Setpoint λges exceeded

9 1 Close setpoint DI1 active

10 1 Close setpoint DI2 active

11 1 Close setpoint DI3 active

12 1 Close setpoint DI4 active

13 1 Close setpoint DI5 active

14 1 Close setpoint DI6 active

15 Reserved

16 Trigger value >-Demand setpoint Pges exceeded

17 Trigger value >-Demand setpoint Qges exceeded

18 Trigger value x 1000

>Demand setpoint λges exceeded

19 Trigger value >-Predicted setpoint Pges exceeded

Event classification

Event sub classification

Event valueUnit

OptionDescription

142 PEM575_D00016_01_M_XXEN/05.2016

Page 143: PEM575 - Bender

Modbus Register Map

3

20 Trigger value >Predicted setpoint Qges exceeded

21 Trigger value x 1000

>Predicted setpoint λges exceeded

22 Trigger value x 100

>-Setpoint THDU exceeded

23 Trigger value x 100

>-Setpoint TOHDU exceeded

24 Trigger value x 100

>-Setpoint TEHDU exceeded

25 Trigger value x 100

>-Setpoint THDI exceeded

26 Trigger value x 100

>-Setpoint TOHDI exceeded

27 Trigger value x 100

>-Setpoint TEHDI exceeded

28 Trigger value x 10

>Voltage unbalance setpoint exceeded

29 Trigger value x 10

>Current unbalance setpoint exceeded

30 Trigger value x 100

>-Voltage deviation setpoint exceeded

31 1 >-Phase reversal setpoint exceeded

Reserved

46 Return value x 100

>-Setpoint ULN return

47 Return value x 100

>-Setpoint ULL return

48 Return value x 1000

>-Setpoint I return

49 Return value x 1000

>-Setpoint I4 return

Event classification

Event sub classification

Event valueUnit

OptionDescription

143PEM575_D00016_01_M_XXEN/05.2016

Page 144: PEM575 - Bender

Modbus Register Map

3

50 Return value x 100

>-Setpoint Δf return

51 Return value >-Setpoint Pges return

52 Return value >-Setpoint Qges return

53 Return value x 1000

>-Setpoint λges return

54 0 DI1 close setpoint return

55 0 DI2 close setpoint return

56 0 DI3 close setpoint return

57 0 DI4 close setpoint return

58 0 DI5 close setpoint return

59 0 DI6 close setpoint return

60 Reserved

61 Return value >- Setpoint demand Pges return

62 Return value >-Setpoint demand Qges return

63 Return value x 1000

>-Demand setpoint λges return

64 Return value >-Predicted setpoint Pges return

65 Return value >-Predicted setpoint Qges return

66 Return value x 1000

>-Predicted setpoint λges return

67 Return value x 100

>-Setpoint THDU return

68 Return value x 100

>-TOHDU setpoint return

69 Return value x 100

>-Setpoint TEHDU return

70 Return value x 100

>-Setpoint THDI return

Event classification

Event sub classification

Event valueUnit

OptionDescription

144 PEM575_D00016_01_M_XXEN/05.2016

Page 145: PEM575 - Bender

Modbus Register Map

3

71 Return value x 100

>-Setpoint TOHDI return

72 Return value x 100

>-Setpoint TEHDI return

73 Return value x 10

>-Voltage unbalance setpoint return

74 Return value x 10

>-Current unbalance setpoint return

75 Return value x 100

>-Voltage deviation setpoint return

76 0 >-Phase reversal setpoint return

Reserved

91 Trigger value x 100

Under <-Setpoint ULN

92 Trigger value x 100

Under <-Setpoint ULL

93 Trigger value x 1000

Under <-Setpoint I

94 Trigger value x 1000

<-Under I4 setpoint

95 Trigger value x 100

<-Under Δf setpoint

96 Trigger value Under <-Setpoint Pges

97 Trigger value <-Under Qges setpoint

98 Trigger value x 1000

Under <-Setpoint λges

99 1 DI1 open setpoint active

100 1 DI2 open setpoint active

101 1 DI3 open setpoint active

102 1 DI4 open setpoint active

Event classification

Event sub classification

Event valueUnit

OptionDescription

145PEM575_D00016_01_M_XXEN/05.2016

Page 146: PEM575 - Bender

Modbus Register Map

3

103 1 DI5 open setpoint active

104 1 DI6 open setpoint active

105 Reserved

106 Trigger value Under <-Setpoint demand Pges

107 Trigger value Under <-Setpoint demand Qges

108 Trigger value x 1000

<-Under λges demand setpoint

109 Trigger value <-Under Pges predicted setpoint

110 Trigger value <-Under Qges predicted setpoint

111 Trigger value x 1000

<-Under λges predicted setpoint

112 Trigger value x 100

Under <-Setpoint THDU

113 Trigger value x 100

Under <-Setpoint TOHDU

114 Trigger value x 100

Under <-Setpoint TEHDU

115 Trigger value x 100

Under <-Setpoint THDI

116 Trigger value x 100

Under <-Setpoint TOHDI

117 Trigger value x 100

Under <-Setpoint TEHDI

118 Trigger value x 10

<-Under voltage unbalance setpoint

119 Trigger value x 10

<-Under current unbalance setpoint

120 Trigger value x 100

<-Under voltage deviation setpoint

121 1 <-Under phase reversal setpoint

Event classification

Event sub classification

Event valueUnit

OptionDescription

146 PEM575_D00016_01_M_XXEN/05.2016

Page 147: PEM575 - Bender

Modbus Register Map

3

Reserved

136 Return value x 100

<-Setpoint ULN return

137 Return value x 100

<-Setpoint ULL return

138 Return value x 1000

<-Setpoint I return

139 Return value x 1000

<- I4 setpoint return

140 Return value x 100

<- Δ f setpoint return

141 Return value <-Setpoint Pges return

142 Return value <-Setpoint Qges return

143 Return value x 1000

<-Setpoint λges return

144 1 DI1 open setpoint return

145 1 DI2 open setpoint return

146 1 DI3 open setpoint return

147 1 DI4 open setpoint return

148 1 DI5 open setpoint return

149 1 DI6 open setpoint return

150 Reserved

151 Return value <-Setpoint demand Pges return

152 Return value <-Setpoint demand Qges return

153 Return value x 1000

<-Setpoint demand λges return

154Return value

<- Predicted demand setpoint Pges return

Event classification

Event sub classification

Event valueUnit

OptionDescription

147PEM575_D00016_01_M_XXEN/05.2016

Page 148: PEM575 - Bender

Modbus Register Map

3

155Return value

<-Predicted demand setpoint Qges return

156 Return value x 1000

<-Predicted demand setpoint λges return

157 Return value x 100

<-Setpoint THDU return

158 Return value x 100

<-Setpoint TOHDU return

159 Return value x 100

<-Setpoint TEHDU return

160 Return value x 100

<-Setpoint THDI return

161 Return value x 100

<-Setpoint TOHDI return

162 Return value x 100

<-Setpoint TEHDI return

163 Return value x 10

<-Voltage unbalance setpoint return

164 Return value x 10

<-Current unbalance setpoint return

165 Return value x 100

<-Voltage deviation setpoint return

166 0 <-Phase reversal setpoint return

4

1 0 Battery voltage low

2 0 Fault power supply CPU

3 0 A/D fault

4 0 NVRAM fault

5 0 System parameter fault

6 0 Calibration parameter fault

7 0 Setpoint parameter fault

Event classification

Event sub classification

Event valueUnit

OptionDescription

148 PEM575_D00016_01_M_XXEN/05.2016

Page 149: PEM575 - Bender

Modbus Register Map

4

8 0 Data recorder parameter fault

9 0 Waveform recorder parameter fault

10 0 Energy log parameter fault

5

1 0 Supply voltage on

2 0 Supply voltage off

3 0 Clock set via front panel

4 0 Setup changed via device buttons

5 0 DI counter cleared via front panel

6 0 Event log cleared via device buttons

7 0 PQ log cleared via front panel

8 0 Energy values cleared via device buttons

9 0 Data recorder cleared via front panel

100

Waveform recording cleared via front panel

11 0 Energy log cleared via front panel

120

Max/Min value log of this month cleared via device buttons

130

Peak demand of this month cleared via device buttons

140

Setup changed via communications interface

150

DI counter cleared via communications interface

160

Event log cleared via communications interface

170

PQ log cleared via communications interface

180

Energy values cleared via communica-tions interface

Event classification

Event sub classification

Event valueUnit

OptionDescription

149PEM575_D00016_01_M_XXEN/05.2016

Page 150: PEM575 - Bender

Modbus Register Map

5

190

Data recorder cleared via communica-tions interface

200

Waveform recording cleared via commu-nications interface

210

Energy log cleared via communications interface

220

Max/Min value log of this month cleared via communications interface

230

Peak demand of this month cleared via communications interface

6

10

Waveform recording triggered by com-munications interface

2 Setpoint 1…24

Waveform recording triggered by set-point

30

Waveform recording triggered by under-voltage/overvoltage

4 Setpoint 1…24

Data recorder (standard) triggered by setpoint

5 Setpoint 1…24

Data recorder (highspeed) triggered by setpoint

60

Data recorder (standard) triggered by undervoltage/overvoltage

70

Data recorder (highspeed) triggered by undervoltage/overvoltage

8 Setpoint 1…24

Reserved

9 0 Reserved

100

Waveform recording triggered by transi-ent event

110

Data recorder (standard) triggered by transient event

Event classification

Event sub classification

Event valueUnit

OptionDescription

150 PEM575_D00016_01_M_XXEN/05.2016

Page 151: PEM575 - Bender

Modbus Register Map

Tab. 10.42: Event classification

10.18 Time settingThere are two time register formats supported by PEM575:

1. Year/Month/Day/Hour/Minute/Second register 9000…9002

2. UNIX-time register 9004

When sending the time via Modbus communications, care should be taken to only write one of the two time register sets. All registers within a time register set must be written in a single transaction.If all the registers 9000…9004 are set, both timestamp registers will be updated to reflect the new time specified in the UNIX time register set. Time specified in the first display format will be ignored.

Optionally, the register 9003 displays milliseconds. When broadcasting time, the function code has to be set to 0x10 (Preset Multiple Register). Incorrect date or time values will be rejected by the universal measuring device.

Tab. 10.43: Timestamp register

612

0Data recorder (highspeed) triggered by transient event

13 0 Reserved

Register Property Description Format Note

9000 RWYear and month

UINT16HiWord: Year - 2000LoWord: Month (1…12)

9001 RWDay and Hour

UINT16HiWord: day (1…31) LoWord: Hour (0…23)

9002 RWMinute andsecond

UINT16HiWord: minute (0…59) LoWord: Second (0…59)

9003 RW Millisecond UINT16 0…999

9004 RW UNIX time UINT32Time in seconds elapsed since January 01, 1970 (00:00:00 h) (0…4102444799)

Event classification

Event sub classification

Event valueUnit

OptionDescription

151PEM575_D00016_01_M_XXEN/05.2016

Page 152: PEM575 - Bender

Modbus Register Map

10.19 DOx output controlThe control register of the digital outputs are implemented as Write-Only registers (WO) and can be controlled with the function code 0x05. In order to query the current DO status, the register 0086 have to be read out.PEM575 supports the execution of commands to the outputs in two steps (ARM before EXECUTING): Before sending an open or close command to one of the outputs, it must be activated first. This is achieved by writing 0xFF00 to the appropriate DO register. If an "Execute" command is not received within 15 seconds, the output will be deactivated again.

Each command to be executed sent to an output not being activated before, will be ignored by the PEM575 and returned as an exception code 0x04.

Tab. 10.44: Digital output control register

Register Property Format Description Note

9100 WO UINT16 Activate DO1 close Writing 0xFF00

9101 WO UINT16 Execute DO1 close Writing 0xFF00

9102 WO UINT16 Activate DO1 open Writing 0xFF00

9103 WO UINT16 Execute DO1 open Writing 0xFF00

9104 WO UINT16 Activate DO2 close Writing 0xFF00

9105 WO UINT16 Execute DO2 close Writing 0xFF00

9106 WO UINT16 Activate DO2 open Writing 0xFF00

9107 WO UINT16 Execute DO2 open Writing 0xFF00

9108 WO UINT16 Activate DO3 close Writing 0xFF00

9109 WO UINT16 Execute DO3 close Writing 0xFF00

9110 WO UINT16 Activate DO3 open Writing 0xFF00

9111 WO UINT16 Execute DO3 open Writing 0xFF00

152 PEM575_D00016_01_M_XXEN/05.2016

Page 153: PEM575 - Bender

Modbus Register Map

10.20 Universal measuring device information

Tab. 10.45: Measuring device information

* The model of the universal measuring device is included in the registers 9800…9819. A coding example is given in the table below using the "PEM575" by way of example.

Tab. 10.46: ASCII coding of "PEM575"

Register Property Description Format Note

9800… 9819 RO Model* UINT16 see table 10.46

9820 RO Software version UINT16 e.g.: 10000 = V1.00.009821 RO Protocol version UINT16 e.g.: 40 = V4.0

9822 ROSoftware update date (year-2000)

UINT16

e.g.: 080709 = July 9, 20089823 ROSoftware update date: month

UINT16

9824 ROSoftware update date: day

UINT16

9825 RO Serial number UINT329827…9829 Reserved

9830 ROMeasuring current configuration

UINT16 0 = 5 A, 1 = 1 A

9831 RO US UINT16 100/400 (V)

Register Value (Hex) ASCII

9800 0x50 P9801 0x45 E9802 0x4D M9803 0x35 59804 0x37 79805 0x35 59806…9819 0x20 Null

153PEM575_D00016_01_M_XXEN/05.2016

Page 154: PEM575 - Bender

Modbus Register Map

154 PEM575_D00016_01_M_XXEN/05.2016

Page 155: PEM575 - Bender

11. Technical data

Insulation co-ordination

Measuring circuitRated insulation voltage ......................................................................................................................................................300 VOvervoltage category................................................................................................................................................................. IIIPollution degree.......................................................................................................................................................................... 2

Supply circuitRated insulation voltage ......................................................................................................................................................300 VOvervoltage category.................................................................................................................................................................. IIPollution degree.......................................................................................................................................................................... 2

Supply voltageRated supply voltage US ...............................................................................................................................AC/DC 95…415 VFrequency range of US ..................................................................................................................................... DC, 44…440 HzPower consumption ....................................................................................................................................................... ≤ 11 VA

Measuring circuit

Measuring voltage inputsUL1-N,L2-N,L3-N......................................................................................................................................................................230 V................................................................................................................................................................400 V (only -451, -455)..................................................................................................................................................................69 V (only -151, -155)UL1-L2,L2-L3,L3-L1 ..................................................................................................................................................................400 V................................................................................................................................................................690 V (only -451, -455)................................................................................................................................................................120 V (only -151, -155)Measuring range ...............................................................................................................................................10… 120 % UNRated frequency .........................................................................................................................................................45…65 HzInternal resistance (L-N)............................................................................................................................................... > 500 kΩ

Measuring current inputsExternal measuring current transformer....................................................... should at least comply with accuracy class 0,5 SBurden................................................................................................................................... n.A., internal current transformersMeasuring range ................................................................................................................................................ 0.1… 120% INPEM575/PEM575-455/PEM575-155

In .......................................................................................................................................................................5 AMeasuring current transformer ratio ...................................................................................................1…6000Accuracy class according with 5 A measuring current transformer .............................................................. 0,2

155PEM575_D00016_01_M_XXEN/05.2016

Page 156: PEM575 - Bender

Technical data

Accuracy class according with 1 A measuring current transformer............................................................... 0,5PEM575-251/PEM575-451/PEM575-151

In ...................................................................................................................................................................... 1 AMeasuring current transformer ratio ................................................................................................. 1…30000Accuracy class according with 1 A measuring current transformer .............................................................. 0,2

Accuracies (v.M. = of measured value/v.S. = of full scale value)Phase voltage UL1-N, UL2-N, UL3-N .................................................................................................. ± 0.1 % of measured valueCurrent ............................................................................................................................................. ±0.1 % v.M./ +0.05% v.S.Neutral current I4 ........................................................................................................................................................ 0.5 % v. S.Frequency .....................................................................................................................................................................± 0.01 HzPhasing .................................................................................................................................................................................± 1 °Measurement of the active energy 0.2S ..........................................................acc. to DIN EN 62053-22 (VDE 0418 Part 3-22)Measurement of the voltage r.m.s. values .........................................acc. to DIN EN 61557-12 (VDE 0413-12), chapter 4.7.6Measurement of the phase current r.m.s. values ...............................acc. to DIN EN 61557-12 (VDE 0413-12), chapter 4.7.5Measurement of the frequency ..........................................................acc. to DIN EN 61557-12 (VDE 0413-12), chapter 4.7.4

InterfaceInterface / protocol .............................................................................................................................. RS-485 / Modbus RTUBaud rate ......................................................................................................................................................... 1.2…19.2 kBit/sCable length .............................................................................................................................................................0…1200 mRecommended cable (shielded, shield connected to SH on one side) ............................................. min. J-Y(St)Y min. 2x0.8Interface/protocol ............................................................................................................................. Ethernet, Modbus TCPBaud rate ...................................................................................................................................................................100 Mbits/s

Switching elementsOutputs ................................................................................................................................................................ 3 N/O contactsOperating principle .............................................................................................................................................. N/O operationRated operational voltage AC 230 V DC 24 V AC 110 V DC 12 VRated operational current 5 A 5 A 6 A 5 AMinimum contact rating ......................................................................................................................... 1 mA at AC/DC ≥ 10 VInputs ............................................................................................................................... 6 electrically separated digital inputsImin .....................................................................................................................................................................................2.4 mAUDI .....................................................................................................................................................................................DC 24 V

Environment / EMCEMC .......................................................................................................................................................................... IEC 61326-1Operating temperature........................................................................................................................................ –25…+55 °CClimatic class according to IEC 60721 (stationary use)........................................................................................................ 3K5Classification of mechanical conditions acc. to IEC 60721 (stationary use) ....................................................................... 3M4Height ...........................................................................................................................................................................to 4000 m

156 PEM575_D00016_01_M_XXEN/05.2016

Page 157: PEM575 - Bender

Technical data

Connection Connection .......................................................................................................................................................... screw terminals

OtherDegree of protection, installation ......................................................................................................................................... IP20Degree of protection, front .................................................................................................................................................... IP52Weight .......................................................................................................................................................................... ≤ 1100 g

11.1 Standards and certificationsPEM575 was designed in accordance with the following standards:

DIN EN 62053-22 (VDE 0418 Part 3-22) Electricity meter equipment (AC) - Particular requirements - Part 22: Static meters for active energy (classes 0.2 S and 0.5 S (IEC 62053));

DIN EN 61557-12 (VDE 0413-12) Elektrische Sicherheit in Niederspannungsnetzen bis AC 1000 V und DC 1500 V – Geräte zum Prüfen, Messen oder Überwachen von Schutzmaßnahmen – Teil 12: (Electrical safety in low voltage distribution systems up to AC 1000 V and DC 1500 V - Equipment for testing, measuring or monitoring of protective measures _ Part 12) Performance measuring and monitoring device (PMD)

11.2 Ordering information

Type Nominal system voltage 3 (N)AC Current input Article number

PEM575 230/400 V 5 A B 9310 0575

PEM575-251 230/400 V 1 A B 9310 0576

PEM575-455 400/690 V 5 A B 9310 0577

PEM575-451 400/690 V 1 A B 9310 0578

PEM575-155 69/120 V 5 A B 9310 0579

PEM575-151 69/120 V 1 A B 9310 0580

157PEM575_D00016_01_M_XXEN/05.2016

Page 158: PEM575 - Bender

Technical data

158 PEM575_D00016_01_M_XXEN/05.2016

Page 159: PEM575 - Bender

INDEX

AApparent power, calculation 47Application example 17Area of application 15

BBack-up fuses 21Button

- "ENERGY" 40- "HARMONICS" 29, 39- "POWER" 29- "V/I" 29, 35

CCalculation individual harmonic distortion 48Commissioning 27Configuration example

- 49Connection

- Three-phase 4-wire system 23Connection diagram

- Connection via voltage transformers 25- Three-phase 3-wire system 24- Three-phase 3-wire systems 25- Three-phase 4-wire system 23

Connection of measuring current transformers 21Connection via voltage transformers 25Control

- Digital outputs 152

DDemand 53Demand display 32Demand period 54

Description of function 17Device features 15Digital inputs 25, 51Digital output 26

- Modbus control 152Digital outputs 51Dimension diagram 19Display 30, 32Display mode

- Data display 34- Standard display 34

DOx control 152

EEnergy log 76Energy pulsing

- Display 52- enable/disable 45- LED indication 34

Event- Classification 141- Logging 79- Modbus register 139

FFront panel mounting 20Front view 18

HHarmonics 39, 81How to use this manual 9

IInputs, digital 25

159PEM575_D00016_01_M_XXEN/05.2016

Page 160: PEM575 - Bender

INDEX

Installation 19Intended use 13

Kk-factor 39

LLC display

- Power and current demands 32- Standard display areas 30– 32- testing 30

LED indication 34Logging

- data recorder 62- Event 79- Max and Min values 61- Peak demand 61- Power Quality 78- Waveform recording 77

Logic modules 59

MMeasured quantities for data recorders 64measuring current transformers 21Modbus

- Basic measurements 87- Clear/reset 121- Energy measurement 91- Event log 139- High-speed measurement 97- Logic module 127- Max/Min log 108- Measuring device information 153- Peak demand 106- Power Quality (Fundamental) 93- Power Quality (Harmonics) 95- Register Map 85- Setpoint setup 123- Setup parameters 116

- SOE log 139- TCP (connector pin assignment) 26

OOperating elements 29Output, digital 26

PPhase angle

- Current 53- Voltage 53

Power factor rules 47Power Quality 81, 93Pulse counter 92

RRear view 18

SSafety instructions 14, 19, 21Service 10Set demand period 54Setpoint trigger 58Setup

- Setting options 43– 47Sliding Window 54SOE log

- Data structure 107- Modbus 139

Standard display areas 30Start

- Function of the buttons 41- Overview diagram menu 42- SETUP mode 41

Support 10

TTechnical data 155

160 PEM575_D00016_01_M_XXEN/05.2016

Page 161: PEM575 - Bender

INDEX

TEHD 39, 81Testing LCD 30THD 39Time setting 151Time zones 121TOHD 39, 81Total harmonic distortion 39

UUnbalance 83

VVersions 16

WWiring diagram 22Work activities on electrical installations 13Workshops 11

161PEM575_D00016_01_M_XXEN/05.2016

Page 162: PEM575 - Bender

INDEX

162 PEM575_D00016_01_M_XXEN/05.2016

Page 163: PEM575 - Bender
Page 164: PEM575 - Bender

Bender GmbH & Co. KGPostfach 1161 • 35301 Gruenberg • GermanyLondorfer Str. 65 • 35305 Gruenberg • Germany

Tel.: +49 6401 807-0Fax: +49 6401 807-259

E-Mail: [email protected]: Bender