Top Banner
Naoki Masuda (University of Tokyo) Ref: Masuda. Proc. R. Soc. B, 274, 18151821 (2007). Also see Masuda & Aihara, Phys. LeK. A, 313, 5561 (2003). ParNcipaNon costs dismiss the advantage of heterogeneous networks in evoluNon of cooperaNon
26

Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

Jun 21, 2015

Download

Technology

Naoki Masuda

Presentation slides for the following two papers (mainly (1)):
(1) Masuda. Proceedings of the Royal Society B: Biological Sciences, 274, 1815-1821 (2007).
(2) Masuda and Aihara. Physics Letters A, 313, 55-61 (2003).
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

Naoki  Masuda  (University  of  Tokyo)

Ref:  Masuda.  Proc.  R.  Soc.  B,  274,  1815-­‐1821  (2007).

Also  see  Masuda  &  Aihara,  Phys.  LeK.  A,  313,  55-­‐61  (2003).

ParNcipaNon  costs  dismiss  the  advantage  of  heterogeneous  

networks  in  evoluNon  of  cooperaNon

Page 2: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

Prisoner’s  DilemmaCooperate Defect

Cooperate (3,  3) (0,  5)

Defect (5,  0) (1,  1)

SelfOpponent

unique  Nash  equilibrium

CC

C C

CD

DD D

D

DC

D C

DD

DD D

D

DD

D D

DD

DD D

D

Page 3: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

Mechanisms  for  cooperaNon• Kin  selecNon  (Hamilton,  1964)

• Direct  reciprocity  (Trivers,  1971;  Axelrod  &  Hamilton  1981)

• Iterated  Prisoner’s  dilemma

• Group  selecNon  (Wilson,  1975;  Traulsen  &  Nowak,  2006)

• SpaNal  reciprocity  (Axelrod,  1984;  Nowak  &  May,  1992)

• Indirect  reciprocity  (Nowak  &  Sigmund,  1998)

• Image  scoring

• Network  reciprocity  (Lieberman,  Hauert  &  Nowak,  2005;  Santos  et  al.,  2005,  2006;  Ohtsuki  et  al.,  2006)

• Others  (punishment?,  voluntary  parNcipaNon  etc.)

Page 4: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

Iterated  Prisoner’s  Dilemma

• Players  randomly  interact  with  others

• Discount  factor  w  (0  ≤  w  ≤  1)  to  specify  the  prob.  that  the  next  game  is  played  in  a  round

A’s  accumulated  payoff    =  3  +  5w  +  1w2  +  3w3  +  1w4  +  0w5  +  …

A  plays C D D C D C

B  plays C C D C D D

A  gets 3 5 1 3 1 0

acNon C D

C (3,  3) (0,  5)

D (5,  0) (1,  1)

Page 5: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

• SelecNon  based  on  accumulated  payoff  aher  each  round

• Replicator  dynamics

• Best-­‐response  dynamics

• Nice,  retalitatory,  and  forgiving  strategies  (e.g.  Tit-­‐for-­‐Tat)  are  generally  strong  (but  not  the  strongest).

Page 6: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

SpaNal  Prisoner’s  Dilemma(Axelrod,  1984;  Nowak  &  May,  1992)• e.g.  square  laice

• Either  cooperator  or  defector  on  each  vertex

• Each  player  plays  against  all  (4  or  8)  neighbors.

C:24 C:18 D:24 D:12

C:24 C:21 C:12 D:16

C:24 C:21 C:12 D:16

C:21 C:15 D:20 D:16

Page 7: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

• Successful  strategies  propagate  aher  one  generaNon.

• Result:  Cs  form  “clusters”  to  resist  invasion  by  Ds.

• Note:  2-­‐neighbor  CA.  More  complex  than  1-­‐neighbor  dynamics  such  as  spin  (opinion)  dynamics  and  disease  dynamics

Page 8: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

PD  on  the  WaKs-­‐Strogatz  small-­‐world  network(Masuda  and  Aihara,  Phys.  LeK.  A,  2003)

Note:  The  degrees  of  all  the  nodes  are  the  same  

regardless  of  the  rewiring.

acNon C D

C (1,  1) (0,  T)

D (T,  0) (0,  0)p  =  0 p:  small p  ≈  1

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5

%C

T

p=0p=0.01p=0.9

Page 9: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400

%C

generation

T=1.1

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400

%C

generation

T=1.70

0.2

0.4

0.6

0.8

1

0 100 200 300 400

%C

generation

T=3.0

•  1-­‐dim  ring

•  QualitaNvely  the  same  results  for  2-­‐dim  networks

small  p

small  p

small  p

large  p large  p

large  p

Page 10: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

Clustering  helps  cooperaNonmore  C more  D

Small  distance  (L)  accelerates  whatever  propagaNon

slow fast

Page 11: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

Social  dilemma  games  on  scale-­‐free  networks?

Page 12: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

Scale-­‐free  networks  promote  cooperaNon

acNon Cooperate Defect

Cooperate (1,  1) (S,  T)

Defect (T,  S) (0,  0)

Originally  by  Santos,  Pacheco  &  Lenaerts,  PNAS  2006T

S

(a)

0 1 2-1

0

1

T

S

(b)

0 1 2-1

0

1

Regular  RG(or  the  complete  graph) scale-­‐free

stag  hunt

snowdrihno  dilemma

PD

Page 13: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

Two  assumpNons  underlie  the  enhanced  coopraNon  in  SF  nets

Page 14: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

AssumpNon  1:  addiNve  payoff  scheme

• AddiNve:  add  the  payoffs  gained  via  all  the  neighbors  

• Nowak,  Bonhoeffer  &  May  1994;  Abramson  &  Kuperman  2001;  Ebel  &  Bornholdt,  2002;  Ihi,  Killingback  &  Doebeli  2004;  Durán  &  Mulet,  2005;  Santos  et  al.,  2005;  2006;  Ohtsuki  et  al.,  2006

• Average:  divide  the  summed  payoffs  by  the  number  of  neighbors

• Kim  et  al.,  2002;  Holme  et  al.,  2003;  Vukov  &  Szabó,  2005;  Taylor  &  Nowak,  2006

Page 15: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

acNon Cooperate Defect

Cooperate (3,  3) (0,  5)

Defect (5,  0) (1,  1)

k = 1001 2v v

10 90

1 k = 22

= C= D

addiNve

payoff  scheme

average

3×10+0×90  =  30

(3×10+0×90)/100  =  0.3

5×2  =  10

(5×2)/2  =  5

Page 16: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

• Average  payoff  diminishes  cooperaNon  in  heterogeneous  networks  (Santos  &  Pacheco,  J.  Evol.  Biol.,  2006).

Page 17: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

• Originate  from  the  translaNon  invariance  of  replicator  dynamics

AssumpNon  2:  PosiNvely  biased  payoffs

→  Nme  rescaling

→  parNcipaNon  cost

acNon C D

C (1,  1) (0,  T)

D (T,  0) (0,  0)

acNon C D

C (1,  1) (S,  T)

D (T,  S) (0,  0)

✓a bc d

◆!

✓a� h b� hc� h d� h

✓a bc d

◆!

✓ka kbkc kd

✓a bc d

◆!

✓a+ k b+ kc d

C D

C a b

D c d

!!(⇡C = axC + bxD

⇡D = cxC + dxD

h⇡i = ⇡CxC + ⇡DxD(xC = xC (⇡C � h⇡i)xD = xD (⇡D � h⇡i)

Page 18: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

Reason  for  enhanced  cooperaNon

• Hubs  earn  more  than  leaves.

• C  on  hubs  (with  at  least  some  C  neighbors)  are  stable.

• C  spreads  from  hubs  to  leaves.

acNon C D

C (1,  1) (0,  T)

D (T,  0) (0,  0)

k = 1001 2v v

10 90

1 k = 22

= C= D

Page 19: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

Payoff  matrix  is  not  invariant  on  heterogeneous  networks

acNon C D

C (1,  1) (0,  T)

D (T,  0) (0,  0)

→  Nme  rescaling

→  parNcipaNon  cost

✓a bc d

◆!

✓a� h b� hc� h d� h

✓a bc d

◆!

✓ka kbkc kd

✓a bc d

◆!

✓a+ k b+ kc d

C D

C a b

D c d

!!(⇡C = axC + bxD

⇡D = cxC + dxD

h⇡i = ⇡CxC + ⇡DxD(xC = xC (⇡C � h⇡i)xD = xD (⇡D � h⇡i)

NG

NG

Page 20: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

Our  assumpNons• AddiNve  payoff  scheme

• Introduce  the  parNcipaNon  cost

• Do  numerics

• N  =  5000  players

• Each  player  plays  against  all  the  neighbors.

• Replicator-­‐type  update  rule:  player  i  copies  player  j’s  strategy  with  prob

 (πj-­‐πi)/[max(ki,kj)  *  (max  possible  payoff  –  min  possible  payoff)]

Page 21: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

T

h

(a)

0.7 1 1.3 1.6

0

1

2

3

T

h

(a)

0.7 1 1.3 1.6

0

1

2

3cf

0

0.25

0.5

0.75

1

Simplified  prisoner’s  dilemma

acNon C D

C (1-h,  1-h) (-h,  T-h)D (T-h,  -h) (-h,  -h)

regular  random  net

scale-­‐free  net 3  (roughly  separated)  regimes

Strong  influence  of  iniNal  cnds  due  to  long  transients

Somewhat  reduced  cooperaNon

Enhanced  cooperaNon  (prev  results)

1

2

3

Page 22: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

From  leaves  to  hubs.    PD  payoff  structure  is  most  relevant.

T

h

(a)

0.7 1 1.3 1.6

0

1

2

3 1

2

3

Strategy  spreads  from  stubborn  leaves  to  hubs.

From  hub  cooperators  to  leaves.

-50

0

50

100

0 50 100 150 200

gene

ratio

n pa

yoff

# neighbors

(a)

0

50

10 100

# fli

ps

# neighbors

(b)

T  =  1.5

h  =  0h  =  0.23h  =  0.2

h  =  0.24h  =  0.25

h  =  0.3h  =  0.5

h  =  0h  =  0.2

h  =  0.23

h  =  0.24h  =  0.25

h  =  0.3

h  =  0.5

Page 23: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

General  matrix  game• Homogeneous  (in  degree)  →  2  parameters  (S  

and  T)

• e.g.  well-­‐mixed,  square  laice,  regular  random  graph

• Heterogeneous  →  3  parameters  (S,  T,  and  h)

• e.g.  ER  random  graph,  scale-­‐free

• PD,  snowdrih  game,  hawk-­‐dove  game  included

acNon C D

C (1-h,  1-h) (S-h,  T-h)D (T-h,  S-h) (-h,  -h)

Page 24: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

T

S

(a)

0 1 2-1

0

1

T

S

(c)

0 1 2-1

0

1

T

S

(e)

0 1 2-1

0

1

T

S

(d)

0 1 2-1

0

1

T

S

(b)

0 1 2-1

0

1

1 2

3

Regular  RG  (h  =  0) SF  (h  =  0) SF  (h  =  0.5)

SF  (h  =  1) SF  (h  =  2)

stag  hunt

snowdrihno  dilemma

PD

cf

0

0.25

0.5

0.75

1

1

2

consistent  with  Santos  et  al.,  PNAS  (2006)

Page 25: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

Thoughts  about  the  payoff  bias  

• Naturally  understood  as  the  parNcipaNon  cost

• Payoffs  may  be  negaNve  in  many  pracNcal  situaNons.

• Environmental  problems?

• InternaNonal  relaNons?

• When  one  is  ‘forced’  to  play  games

Page 26: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

Conclusions• Games  with  parNcipaNon  costs  on  networks  

• More  C  for  small  parNcipaNon  cost  h  (previous  work).

• Networks  determine  dynamics  for  small  and  large  h.

• Payoff  matrix  is  most  relevant  for  intermediate  h.

• Think  twice  about  the  use  of  simplified  PD  payoff  matrices.