Top Banner

of 25

PAPER Ilmu Ukur Wilayah

Jul 12, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

BAB I PAENDAHULUAN

I.

LATAR BELAKANG Ilmu ukur tanah adalah bagian rendah dari ilmu Geodesi, yang merupakan suatu ilmu yang mempelajari ukuran dan bentuk bumi dan menyajikannya dalam bentuk tertentu. Ilmu Geodesi ini berguna bagi pekerjaan perencanaan yang membutuhkan data-data koordinat dan ketinggian titik lapangan Berdasarkan ketelitian pengukurannya, ilmu Geodesi terbagi atas dua macam, yaitu : 1. Geodetic Surveying, yaitu suatu survey yang memperhitungkan

kelengkungan bumi atau kondisi sebenarnya. Geodetic Surveying ini digunakan dalam pengukuran daerah yang luas dengan menggunakan bidang hitung yaitu bidang lengkung (bola/ellipsoid). 2. Plane Surveying, yaitu suatu survey yang mengabaikan kelengkungan bumi dan mengasumsikan bumi adalah bidang datar. Plane Surveying ini digunakan untuk pengukuran daerah yang tidak luas dengan menggunakan bidang hitung yaitu bidang datar. Dalam praktikum ini kita memakai Plane Surveying (Ilmu Ukur Tanah). Ilmu Ukur tanah dianggap sebagai disiplin ilmu, teknik dan seni yang meliputi semua metoda untuk pengumpulan dan pemrosesan informasi tentang permukaan bumi dan lingkungan fisik bumi yang menganggap bumi sebagai bidang datar, sehingga dapat ditentukan posisi titik-titik di permukaan bumi. Dari titik yang telah didapatkan tersebut dapat disajikan dalam bentuk peta. Dalam praktikum Ilmu Ukur Tanah ini mahasiswa akan berlatih melakukan pekerjaan-pekerjaan survey, dengan tujuan agar Ilmu Ukur Tanah yang didapat dibangku kuliah dapat diterapkan di lapangan, dengan demikian diharapkan mahasiswa dapat memahami dengan baik aspek diatas.

Dengan praktikum ini diharapkan dapat melatih mahasiswa melakukan pemetaan situasi teritris. Hal ini ditempuh mengingat bahwa peta situasi pada umumnya diperlukan untuk berbagai keperluan perencanaan teknis atau keperluan-keperluan lainnya yang menggunakan peta sebagai acuan. Pengukuran titik-titik detail dengan metode Tachymetri ini adalah cara yang paling banyak digunakan dalam praktek, terutama untuk pemetaan daerah yang luas dan untuk detail-detail yang bentuknya tidak beraturan. Untuk dapat memetakan dengan cara ini diperlukan alat yang dapat mengukur arah dan sekaligus mengukur jarak, yaitu Teodolite Kompas atau BTM (Boussole Tranche Montage). Pada alatalat tersebut arah-arah garis di lapangan diukur dengan jarum kompas sedangkan untuk jarak digunakan benang

silang diafragma pengukur jarak yang terdapat pada teropongnya. Salah satu theodolite kompas yang banyak digunakan misalnya theodolite WILD TO. Tergantung dengan jaraknya, dengan cara ini titik-titik detail dapat diukur dari titik kerangka dasar atau dari titik-titik penolong yang diikatkan pada titik kerangka dasar.

II.

TUJUAN Tujuan yang ingin dicapai dari mata kuliah Ilmu Ukur Wilayah ini adalah agar dapat mengetahui dan memahami dengan baik bagaimana menggunakan alat, mengukur poligon, mengolah data, dan penggambaran peta. Serta keperluan pengukuran dan pemetaan selain pengukuran kerangka dasar vertikal yang menghasilkan tinggi titik-titik ikat dan pengukuran kerangka dasar horizontal yang menghasilkan koordinat titik-titik ikat juga perlu dilakukan pengukuran titik-titik detail untuk menghasilkan titik-titik detail yang tersebar di permukaan bumi yang menggambarkan situasi

daerah pengukuran.

BAB II TINJAUAN PUSTAKA

Metode tachymetri adalah pengukuran menggunakan alat-alat optis, elektronis, dan digital. Pengukuran detail cara tachymetri dimulai dengan penyiapan alat ukur di atas titik ikat dan penempatan rambu di titik bidik. Setelah alat siap untuk pengukuran, dimulai dengan perekaman data di tempat alat berdiri, pembidikan ke rambu ukur, pengamatan azimuth dan pencatatan data di rambu BT, BA, BB serta sudut miring . Metode tachymetri didasarkan pada prinsip bahwa pada segitiga-segitiga sebangun, sisi yang sepihak adalah sebanding. Kebanyakan pengukuran tachymetri adalah dengan garis bidik miring karena adanya keragaman topografi, tetapi perpotongan benang stadia dibaca pada rambu tegak lurus dan jarak miring "direduksi" menjadi jarak horizontal dan jarak vertikal. Pada gambar, sebuah transit dipasang pada suatu titik dan rambu dipegang pada titik tertentu. Dengan benang silang tengah dibidikkan pada rambu ukur sehingga tinggi t sama dengan tinggi theodolite ke tanah. Sudut vertikalnya (sudut kemiringan) terbaca sebesar a. Perhatikan bahwa dalam pekerjaan tachymetri tinggi instrumen adalah tinggi garis bidik diukur dari titik yang diduduki (bukan TI, tinggi di atas datum seperti dalam sipat datar). Metode tachymetri itu paling bermanfaat dalam penentuan lokasi sejumlah besar detail topografik, baik horizontal maupun vetikal, dengan transit atau planset. Di wilayah-wilayah perkotaan, pembacaan sudut dan jarak dapat dikerjakan lebih cepat dari pada pencatatan pengukuran dan pembuatan sketsa oleh pencatat. Tachymetri "diagram' lainnya pada dasarnya bekerja atas bekerja atas prinsip yang, sama sudut vertikal secara otomatis dipapas oleh pisahan garis stadia yang beragam. Sebuah tachymetri swa-reduksi memakai sebuah garis horizontal tetap pada sebuah diafragma dan garis horizontal lainnya pada diafragma keduanya dapat bergerak, yang bekerja atas dasar perubahan sudut vertikal. Kebanyakan alidade planset memakai suatu jenis prosedur reduksi tachymetri.

Pengukuran titik detail tachymetri

Pengukuran titik-titik detail dengan metode Tachymetri ini adalah cara yang paling banyak digunakan dalam praktek, terutama untuk pemetaan daerah yang luas dan untuk detail-detail yang bentuknya tidak beraturan. * Pengukuran tachymetri untuk titik bidik horizontal Selain benang silang tengah, diafragma transit atau theodolite untuk tachymetri mempunyai dua benang horizontal tambahan yang ditempatkan sama jauh dari tengah (gambar 22). Interval antara benang benang stadia itu pada

kebanyakan instrumen memberikan perpotongan vertikal 1 ft pada rambu yang dipasang sejauh 100 ft ( 1 m pada jarak 100 m ). Jadi jarak ke rambu yang dibagi secara desimal dalam feet, persepuluhan dan perseratusan dapat langsung dibaca sampai foot terdekat. * Pengukuran tachymetri untuk bidikan miring Kebanyakan pengukuran tachymetri adalah dengan garis bidik miring karena adanya keragaman topografi, tetapi perpotongan benang stadia dibaca pada rambu tegak lurus dan jarak miring direduksi menjadi jarak horizontal dan jarak vertikal. Rambu tachymetri Berbagai jenis tanda dipakai pada rambu tachymetri tetapi semua mempunyai bentukbentuk geometrik yang menyolok dirancang agar jelas pada jarak jauh.

Kebanyakan rambu tachymetri telah dibagi menjadi feet dan persepuluhan (perseratusan diperoleh dengan interpolasi), tetapi pembagian skala sistem metrik sedang menjadi makin umum. Warna-warna berbeda membantu membedakan angkaangka dan pembagian skala. Rambu-rambu tachymetri biasa berbentuk satu batang, lipatan atau

potonganpotongan dengan panjang 10 atau 12 ft. kalau dibuat lebih panjang dapat meningkatkan jarak bidik tetapi makin berat dan sulit ditangani. Seringkali bagian bawah satu atau dua dari rambu 12 ft akan terhalang oleh rumput atau semak, tinggal sepanjang hanya 10 ft yang kelihatan. Panjang bidikan maksimum

dengan demikian adalah kira-kira 1000 ft. Pada bidikan yang lebih jauh, setengah interval (perpotongan antara benang tengan dengan benang stadia atas atau bawah) dapat dibaca dan dilipatgandakan untuk dipakai dalam persamaan reduksi tachymetri yang baku. Bila ada benang perempatan antara benang tengah dengan benang stadia atas, secara teoritis dapat ditaksir jarak sejauh hampir 4000 ft. Pada bidikan pendek, mungkin sampai 200 ft, rambu sipat datar biasa seperti jenis philania sudah cukup memuaskan. * Busur Beaman Busur beaman adalah sebuah alat yang ditempatkan pada beberapa transit dan alidade untuk memudahkan hitunganhitungan tachymetri. Alat ini dapat merupakan bagian dari lingkaran vertikal atau sebuah piringan tersendiri. Skala-skala H dan V busur itu dibagi dalam persen. Skala V menunjukkan selisih elevasi tiap 100 f jarak lereng, sedangakn skala H memberikan koreksi tiap 100 ft untuk dikurangkan dari jarak tachymetri. Karena V berbanding lurus dengan sin 2??? dan koreksi untuk H tergantung pada sin2 ???, selang-selang pembagian skala makin rapat bila sudut vertikal meningkat. Oleh karena itu nonius tidak dapat dipakai disini, dan pembacaan tepat hanya dapat dilakukan dengan memasang busur pada pembacaan angka bulat. Penunjuk skala V (indeks) terpasang agar terbaca 50 (mungkin 30 atau 100 pada beberapa instrumen) bila teropong horizontal untuk menghindari harga-

harga minus. Pembacaan lebih besar dari pada 50 diperoleh untuk bidikan-bidikan di atas horizon, lebih kecil dari 50 di bawahnya. Ilmu hitung yang diperlukan

dalam pemakaian busur beaman disederhanakan dengan memasang skala V pada sebuah angka bulat dan membiarkan benang silang tengah terletak di tempat dekat t.i. Skala H Kemudian umumnya tak akan terbaca pada angka bulat dan harga-harganya harus diinterpolasi. Ini penting karena hitungannya tetap sederhana. Elevasi sebuah titik B yang dibidik dengan transit terpasang di titik A didapat dengan rumus : Elev B = elev A + t.i. + (pembacaan busur 50) ( perpotongan rambu) pembacaan rambu dengan benang tengah Instrumen-instrumen lain mempunyai

busur serupa disebut lingkaran stadia dengan skala V yang sama, tetapi skala H tidak memberikan koreksi presentase melainkan sebuah pengali (multiplier) * Tachymetri swa-reduksi Tachymetri swa-reduksi dan alidade telah dikembangkan dimana garis-garis lengkung stadia nampak bergerak memisah atau saling mendekat sewaktu teropong diberi elevasi atau junam. Sebenarnya garis-garis itu digoreskan pada sebuah piringan kaca yang berputar mengelilingi sebuah rambu (terletak di luar teropong) sewaktu teropong dibidikkan ke sasaran. Pada gambar dibawah garis-garis atas dan bawah (dua garis luar) melengkung untuk menyesuaikan dengan keragaman dalam fungsi trigonometri cos2??? dan dipakai untuk pengukuran jarak. Dua garis dalam menentukan selisih elevasi dan melengkung untuk menggambarkan fungsi sincos. Sebuah garis vertikal, tanda silang tengah, dan garis-garis stadia pendek merupakan tanda pada piringan gelas kedua yang terpasang tetap, terumpun serentak dengan garis-garis lengkung. Sebuah tetapan faktor pengali 100 dipakai untuk jarak horizontal. Faktor 20, 50, atau 100 diterapkan pada pengukuran beda tinggi. Harganya tergantung pada sudut lereng dan ditunjukkan oleh garis-garis pendek ditempatkan antara kurvakurva elevasi. Tachymetri diagram lainnya pada dasarnya bekerja atas bekerja atas prinsip yang sama: Sudut vertikal secara otomatis dipampas oleh pisahan garis stadia yang beragam. Sebuah tachymetri swa-reduksi memakai sebuah garis horizontal tetap pada sebuah diafragma dan garis horizontal lainnya pada diafragma kedua yang

dapat bergerak, yang bekerja atas dasar perubahan sudut vertikal. Kebanyakan alidade planset memakai suatu jenis prosedur reduksi tachymetri. Sebuah rambu topo khusus yang berkaki dapat dipanjangkan dengan angka nol terpasang pada t.i. biasanya dianjurkan untuk dipakai agar instrumen tachymetri sepenuhnya swa-baca. * Prosedur Lapangan Prosedur yang benar menghemat waktu dan mengurangi sejumlah kesalahan dalam semua pekerjaan ukur tanah. Prosedur ini menyebabkan pemegang instrumen dapat membuat sibuk sekaligus dua atau tiga petugas rambu di tanah terbuka di mana titik-titik yang akan ditetapkan lokasinya terpisah jauh. Urutan yang sama dapat dipakai bila menggunakan busur Beaman, tetapi pada langkah 4 skala V ditepatkan pada sebuah angka bulat, dan pada langkah 7 pembacaan-pembacaan skala-H dan skala-V dicatat. Sewaktu membaca jarak optis setelah benang bawah ditempatkan pada sebuah tanda foot bulat, benang tengah tidak tepat pada t.i. atau pembagian skala terbaca untuk sudut vertikal. Ini biasanya tidak menyebabkan galat yang berarti dalam proses reduksi kecuali pada bidikan-bidikan panjang dan sudut-sudut vertikal curam. Bila rambu tidak tegak lurus tentu saja akan menyebabkan galat-galat yang berarti dan untuk mengatasi masalah ini dipakai nivo rambu. Urutan pembacaan yang paling sesuai untuk pekerjaan tachymetri

yang melibatkan sudut vertikal adalah sebagai berikut : a. Bagi dua rambu dengan benang vertikal. b. Dengan benang tengah kira-kira t.i. letakkan benang bawah pada tanda sebuah foot bulat, atau desimeter pada rambu metrik. c. Baca benang atas, dan di luar kepala kurangkan pembacaan benang bawah untuk memperoleh perpotongan rambu, catat perpotongan rambu. d. Gerakan benang tengah ke t.i. dengan memakai sekrup penggerak halus vertikal. e. Perintahkan pemegang rambu untuk pindah titik ke berikutnya dengan tenggara yang benar. f. Baca dan catatlah sudut horizontalnya dan sudut vertikalnya.

* Poligon Tachymetri Dalam poligon transit-optis, jarak, sudut horizontal dan sudut vertikal diukur pada setiap titik. Reduksi catatan sewaktu pengukuran berjalan menghasilkan

elevasi untuk dibawa dari patok ke patok. Harga jarak optis rata-rata dan selisih elevasi diperoleh dari bidikan depan dan belakang pada tiap garis. Pengecekan elevasi harus diadakan dengan jalan kembali ke titik awal atau tititk tetap duga didekatnya untuk poligon terbuka. Walaupun tidak seteliti poligon dengan pita, sebuah regu yang terdiri atas tiga anggota seorang pemegang instrumen, pencatat, dan petugas rambumerupakan kebiasaan. Seorang petugas rambu dapat mempercepat pekerjaan bila banyak detail tersebar luas. Sudut-sudut horizontal juga harus dicek kesalahan penutupnya. Bila ada kesalahan penutup sudut harus diratakan, ???Y dan ???X dihitung dan keseksamaan poligon dicek. * Topografi Metode tachymetri itu paling bermanfaat dalam penentuan lokasi sejumlah besar detail topografik, baik horizontal maupun vetikal, dengan transit atau planset. Di wilayah-wilayah perkotaan, pembacaan sudut dan jarak dapat dikerjakan lebih cepat daripada pencatatan pengukuran dan pembuatan sketsa oleh pencatat. * Sipat Datar Tachymetri Metode tachymetri dapat dipakai untuk sipat datar trigonometris. TI ( tinggi instrumen di atas datum) ditentukan dengan membidik pada stasiun yang diketahui elevasinya, atau dengan memasang instrumen pada titik semacam itu dan mengukur tinggi sumbu II di atasnya dengan rambu tachymetri. Selanjutnya elevasi titik sembarang dapat dicari dengan hitungan dari perpotongan rambu dan sudut vertikal. Jika dikehendaki dapat dilakukan untai sipat datar untuk menetapkan dan mengecek elevasi dua titik atau lebih. * Kesaksamaan (Precision) Sebuah perbandingan galat (ratio or error) 1/300 sampai 1/500 dapat diperoleh untuk poligon transit-optis yang dilaksanakan dengan kecermatan biasa dan

pembacaan baik bidikan depan dan bidikan belakang. Ketelitian dapat lebih baik jika

bidikanbidikan pendek pada poligon panjang dengan prosedur-prosedur khusus. Galatgalat dalam pekerjaan tachymetri biasanya bukan karena sudut-sudut tidak benar tetapi karena pembacaan rambu yang kurang benar. Galat 1 menit pada

pembacaan rambu sebuah sudut vertikal tidak memberikan pengaruh yang berarti pada jarak horizontal. Galat 1 menit tadi menyebabkan selisih elevasi kurang dari 0,1 ft pada bidikan 300 ft untuk sudut-sudut vertikal ukuran biasa. Bila jarak optis ditentukan sampai foot terdekat (kasus umum), sudutsudut horizontal ke titik-titik topografi hanya perlu dibaca sampai batas 5 atau 6 menit untuk memperoleh kesaksamaan yang sebanding pada bidikan 300 ft. Jarak optis yang diberikan sampai foot terdekat dianggap benar sampai batas kira-kira ft. Dengan galat jarak memanjang ft itu, arahnya dapat menyimpang sebesar 5 menit (mudah dihitung dengan 1 menit = 0.00029). Bila dipakai transit Amerika, karenanya sudutsudut dapat penunjuk nonius. Ketelitian sipat datar trigonometris dengan jarak optis tergantung pada panjang bidikan dan ukuran sudut vertiak yang diperlukan. 12.1.13 Sumber-sumber galat dalam pekerjaan tachymetri Galat-galat yang terjadi pada pekerjaan dengan transit dan theodolitee, juga terjadi pada pekerjaan tachymetri. Sumber-sumber galat adalah : a. Galat-galat instrumental - Benang tachymetri yang jaraknya tidak benar. - Galat indeks. - Pembagian skala rambu yang tidak benar. - Garis bidik transit tidak sejajar garis arah nivo teropong. b. Galat-galat pribadi - Rambu tak dipegang tegak (hindari dengan pemakaian nivo rambu). - Salah pembacaan rambu karena bidikan jauh. - Kelalaian mendatarkan untuk pembacaan busur vertikal. Kebanyakan galat dalam pekerjaan tachymetri dapat dihilangkan dengan: dibaca tanpa nonius, hanya dengan mengira kedudukan

a. Menggunakan instrumen dengan benar b. Membatasi panjang bidikan c. Memakai rambu dan nivo yang baik d. Mengambil harga rata-rata pembacaan dalam arah ke depan dan ke belakang. Galat garis bidik tidak dapat dibetulkan dengan prosedur lapangan instrumen harus diatur. * Pengukuran untuk pembuatan peta topografi cara tachymetri Salah satu unsur penting pada peta topografi adalah unsur ketinggian yang biasanya disajikan dalam bentuk garis kontur. Menggunakan pengukuran cara tachymetry, selain diperoleh unsur jarak, juga diperoleh beda tinggi. Bila

theodolite yang digunakan untuk pengukuran cara achymetry juga dilengkapi dengan kompas, maka sekaligus bisa dilakukan pengukuran untuk pengukuran detil topografi dan pengukuran untuk pembuatan kerangka peta pembantu pada pengukuran

dengan kawasan yang luas secara efektif dan efisien. a. Alat ukur yang digunakan pada pengukuran untuk pembuatan peta topografi cara tachimetry menggunakan theodolite berkompas adalah: theodolite berkompas lengkap dengan statif dan unting-unting, rambu ukur yang dilengkapi dengan nivo kotak dan pita ukur untuk mengukur tinggi alat. b. Data yang harus diamati dari tempat berdiri alat ke titik bidik menggunakan peralatan ini meliputi: azimuth magnet, benang atas, tengah dan bawah pada rambu yang berdiri di atas titik bidik, sudut miring, dan tinggi alat ukur di atas titik tempat berdiri alat. c. Keseluruhan data ini dicatat dalam satu buku ukur.

* Tata cara pengukuran detail cara tachymetri menggunakan theodolite berkompas Pengukuran detil cara tachymetri dimulai dengan penyiapan alat ukur di atas titik ikat dan penempatan rambu di titik bidik. Setelah alat siap untuk pengukuran, dimulai dengan perekaman data di tempat alat berdiri, pembidikan ke rambu ukur, pengamatan azimuth dan pencatatan data di rambu BT, BA, BB serta sudut miring: a. Tempatkan alat ukur di atas titik kerangka dasar atau titik kerangka penolong dan atur sehingga alat siap untuk pengukuran, ukur dan catat tinggi alat di atas titik ini. b. Dirikan rambu di atas titik bidik dan tegakkan rambu dengan bantuan nivo kotak.

c. Arahkan teropong ke rambu ukur sehingga bayangan tegak garis diafragma berimpit dengan garis tengah rambu. Kemudian kencangkan kunci gerakan mendatar teropong. d. Kendorkan kunci jarum magnet sehingga jarum bergerak bebas. Setelah jarum setimbang tidak bergerak, baca dan catat azimuth magnetis dari tempat alat ke titik bidik. e. Kencangkan kunci gerakan tegak teropong, kemudian baca bacaan benang tengah, atas dan bawah serta catat dalam buku ukur. Bila memungkinkan, atur bacaan benang tengah pada rambu di titik bidik setinggi alat, sehingga beda tinggi yang diperoleh sudah merupakan beda tinggi antara titik kerangka tempat berdiri alat dan titik detil yang dibidik. f. Titik detil yang harus diukur meliputi semua titik alam maupun buatan manusia yang mempengaruhi bentuk topografi peta daerah pengukuran. * Kesalahan pengukuran cara tachymetri dengan theodolite berkompas Kesalahan alat, misalnya: 1. Jarum kompas tidak benar-benar lurus 2. Jarum kompas tidak dapat bergerak bebas pada prosnya.Garis bidik tidak tegak lurus sumbu mendatar (salah kolimasi). 3. Garis skala 0 - 180 atau 180 - 0 tidak sejajar garis bidik. 4. Letak teropong eksentris. 5. Poros penyangga magnet tidak sepusat dengan skala lingkaran mendatar.

a Kesalahan pengukur, misalnya: 1. Pengaturan alat tidak sempurna (temporary adjustment). 2. Salah taksir dalam pemacaan 3. Salah catat, dll. nya. b. Kesalahan akibat faktor alam, misalnya: 1. Deklinasi magnet. 2. Refraksi local . * Pengukuran Tachymetri Untuk Pembuatan Peta Topografi Cara Polar

Posisi horizontal dan vertikal titik detil diperoleh dari pengukuran cara polar langsung diikatkan ke titik kerangka dasar pemetaan atau titik (kerangka) penolong yang juga diikatkan langsung dengan cara polar ke titik kerangka dasar pemetaan. Unsur yang diukur: a. Azimuth magnetis titik ikat ke titik detail b. Bacaan benang atas, tengah, dan bawah c. Sudut miring, dan d. Tinggi alat di atas titik ikat.

A dan B adalah titik kerangka dasar pemetaan, H adalah titik penolong, 1, 2 ... adalah titik detil, Um adalah arah utara magnet di tempat pengukuran. Berdasar skema pada gambar, maka: a. Titik 1 dan 2 diukur dan diikatkanlangsung dari titik kerangka dasar A, b. Titik H, diukur dan diikatkan langsung dari titik kerangka dasar B, c. Titik 3 dan 4 diukur dan diikatkan langsung dari titik penolong H. * Pengukuran tachymetri untuk pembuatan peta topografi cara poligon kompas.

Letak

titik

kerangka

dasar

pemetaan berjauhan,

sehingga

diperlukan

titik penolong yang banyak. Titik-titik penolong ini diukur dengan cara poligon kompas yang titik awal dan titik akhirnya adalah titik kerangka dasar pemetaan. Unsur jarak dan beda tinggi titik-titik penolong ini diukur dengan menggunakan cara

tachymetri. Posisi horizontal dan vertikal titik detil diukur dengan cara polar dari titiktitik penolong. Berdasarkan skema pada gambar, maka: a. Titik K1, K3, K5, K2, K4 dan K6 adalah titik-titik kerangka dasar pemetaan, b. Titik H1, H2, H3, H4 dan H5 adalah titiktitik penolong c. Titik a, b, c, ... adalah titik detil. Pengukuran poligon kompas K3, H1, H2, H3, H4 , H5, K4 dilakukan untuk memperoleh posisi horizontal dan vertikal titik-titik penolong, sehingga ada dua hitungan: a. Hitungan poligon dan b. Hitungan beda tinggi. * Tata cara pengukuran poligon kompas: a. Pengukuran koreksi Boussole di titik K3 dan K4, b. Pengukuran cara melompat (spring station) K3, H2, H4dan K4. c. Pada setiap titik pengukuran dilakukan pengukuran: 1. Azimuth, 2. Bacaan benang tengah, atas dan bawah, 3. Sudut miring

4. Tinggi alat. * Tata cara hitungan dan penggambaran poligon kompas: a. Hitung koreksi Boussole di K3 = AzG. K31 - AzM K31 b. Hitung koreksi Boussole di K4 = AzG. K42 - AzM K42 c. Koreksi Boussole C = Rerata koreksi boussole di K3 dan K4 d. Hitung jarak dan azimuth geografis setiap sisi poligon. e. Hitung koordinat H1, ... H5 dengan cara BOWDITH atau TRANSIT. f. Plot poligon berdasarkan koordinat definitif. * Peralatan yang dibutuhkan : 1. Pesawat Theodolite Alat pengukur Theodolitee dapat mengukur sudut-sudut yang mendatar dan tegak. Alat pengukur sudut theodolitee dibagi dalam 3 bagian yaitu : a. Bagian bawah, terdiri atas tiga sekrup penyetel SK yang menyangga suatu tabung dan pelat yang berbentuk lingkaran. Pada tepi lingkaran ini dibuat skala lms yang dinamakan limbus. b. Bagian tengah, terdiri atas suatu sumbu yang dimasukkan kedalam tabung bagian bawah. Sumbu ini sumbu tegak atau sumbu kesatu S1. Diatas sumbu S1 diletakkan lagi suatu pelat yang berbentuk lingkaran dan mempunyai jari-jari kurang dari jari-jari pelat bagian bawah. Pada dua tempat di tepi lingkaran di buat pembaca nomor yang berbentuk alat pembaca nonius. Diatas nonius ini ditempatkan dua kaki yang penyangga sumbu mendatar. Suatu nivo diletakkan di atas pelat nonius untuk membuat sumbu kesatu tegak lurus. c. Bagian atas, terdiri dari sumbu mendatar atau sumbu kedua yang diletakkan diatas kaki penyangga sumbu kedua S2. Pada sumbu kedua ditempatkan suatu teropong tp yang mempunyai difragma dan dengan demikian mempunyi garis bidik gb. Pada sumbu kedua diletakkan pelat yang berbentuk lingkaran dilengkapi dengan skala lingkaran tegak ini ditempatkkan dua nonius pada kaki penyangga sumbu kedua. Jika dilihat dari

cara pengukuran dan konstruksinya, bentuk alat ukur Theodolitee di bagi dalam dua jenis, yaitu : a. Theodolitee reiterasi, yaitu jenis theodolitee yang pelat lingkaran skala mendatar dijadikan satu dengan tabung yang letaknya diatas tiga sekerup. Pelat nonius dan pelat skala mendatar dapat diletakkan menjadi satu dengan sekerup kl, sedangkan pergeseran kecil dari nonius terhadap skala lingkaran, dapat digunakan sekerup fl. Dua sekerup kl dan fl merupakan satu pasang ; sekerup fl dapat menggerakkan pelat nonius bila sekerup kl telah dikeraskan. b. Theodolitee repetisi, yaitu jenis theodolitee yang pelatnya dengan skala lingkaran mendatar ditempatkan sedemikian rupa sehingga pelat dapat berputar sendiri dengan tabung pada sekerup penyetel sebagai sumbu putar. Perbedaan jenis repetisi dengan reiterasi adalah jenis repetisi memiliki sekerup k2 dan f2 yang berguna pada penukuran sudut mendatar dengan cara repetisi. c. Selain menggunakan Theodolite, pengukuran titik-titik detail metode tachymetri dapat menggunakan Topcond * Pengolahan Data Pengukuran Tachymetri Data yang diambil dari lapangan semakin banyak semakin baik. Data yang diperoleh di tempat alat berdiri meliputi azimuth magnetis, sudut vertikal inklinasi (miring) atau zenith dan tinggi alat. Data yang diperoleh dari tempat berdiri rambu atau target adalah bacaan benang diafragma (benang atas, benang tengah, dan benang bawah) atau jarak langsung. Pada alat theodolite dengan fasilitas total station koordinat dan ketinggian tinggi titik-titik detail dapat langsung diperoleh dan direkam ke dalam memori penyimpanan. Data yang diperoleh dari lapangan harus diolah untuk menghilangkan kesalahan sistematis dan acak yang terjadi serta membuang kesalahan besar

yang mungkin timbul. Pengolahan data sipat datar kerangka dasar vertical dan polygon kerangka dasar horizontal dapat diolah secara manual dengan bantuan mesin hitung atau secara tabelaris menggunakan bantuan computer.

Penggambaran hasil pemetaan pengukuran tachymetri Pengukuran tachymetri Sebelum hasil praktek pengukuran digunakan untuk keperluan pembuatan peta (penggambaran) maka data dari lapangan diolah terlebih dahulu. Dari hasil pengukuran Tachymetri diperoleh data mentah yang harus diolah sesuai dengan metoda pengukuran yang dilakukan. Data yang telah diolah kemudian disajikan di atas kertas (2 dimensi) dalam bentuk peta yang disebut sebagai pekerjaan pemetaan yang menghasilkan informasi spasial (keruangan) berupa peta. Penggambaran hasil pengukuran tachymetri hampir sama dengan

penggambaran pengukuran sipat datar kerangka dasar vertikal dan penggambaran pengukuran poligon kerangka dasar horizontal. Informasi yang diperoleh dari

pengolahan data sipat datar kerangka dasar vertical adalah tinggi definitif titik-titik ikat, sedangkan informasi yang diperoleh dari pengolahan data kerangka dasar horizontal adalah koordinat titik-titik ikat. Titik awal dan akhir pengukuran juga diberikan sebagai kontrol vertikal dan horizontal. Titik kontrol vertikal dan horizontal dapat diperoleh dengan cara: a. Penentuan benchmark yang ada dari lapangan hasil pengukuran sebelumnya. b. Hasil pengamatan diatas peta, untuk koordinat dari hasil interpolasi grid-grid peta. Sedangkan untuk tinggi definitif diperoleh dari hasil interpolasi garis-garis kontur yang ada diatas peta. Koordinat definitif kemudian dibuat gambarnya baik secara manual maupun digital menggunakan komputer sehingga dapat

diperoleh informasi luas wilayah pengukuran. Tinggi titik-titik ikat digambar pada arah memanjang sehingga dapat diperoleh turun naiknya permukaan tanah

sepanjang jalur pengukuran.

BAB IV HASIL DAN PEMBAHASAN

1.

Pengukuran tachymetri untuk titik bidik horizontal

Benang stadia itu pada kebanyakan instrumen memberikan perpotongan vertikal 1 ft pada rambu yang dipasang sejauh 100 ft ( 1 m pada jarak 100 m ). Jadi jarak ke rambu yang dibagi secara desimal dalam feet, persepuluhan dan perseratusan dapat langsung dibaca sampai foot terdekat. Ini sudah cukup seksama untuk menentukan detail-detail fotografi, seperti; sungai, jembatan, dan jalan yang akan digambar pada peta dengan skala lebih kecil daripada 1 in = 100 ft, dan kadang-kadang untuk skala lebih besar misalnya; 1 in = 50 ft.

Metode tachymetri didasarkan pada prinsip bahwa pada segitiga-segitiga sebangun, sisi yang sepihak adalah sebanding. Pada gambar 321, yang

menggambarkan teropong pumpunan-luar, berkas sinar dari titik A dan B melewati pusat lensa membentuk sepasang segitiga sebangun AmB dan amb. Dimana ; AB = R adalah perpotongan rambu (internal stadia) dan ab adalah selang antara benangbenang stadia.

Simbol-simbol baku yang dipakai dalam pengukuran tachymetri : f = jarak pumpun lensa (sebuah tatapan untuk gabungan lensa objektif tertentu). Dapat ditentukan dengan pumpunan pada objek yang jauh dan mengukur jarak antara pusat lensa objektif (sebenarnya adalah titik simpul dengan diafragma), (jarak pumpun = focal length). f1 = jarak bayangan atau jarak dari pusat (titik simpul) lensa obyektif ke bidang benang silang sewaktu teropong terpumpun pada suatu titik tertentu. F2 = jarak obyek atau jarak dari pusat (titik simpul) dengan titik tertentu sewaktu teropong terpumpun pada suatu titik itu. Bila f2 tak terhingga atau amat besar, maka f1 = f. i. = selang antara benang benang Stadia. f/i .= faktor penggali, biasanya 100 (stadia interval factor). c = jarak dari pusat instrumen (sumbu I) ke pusat lensa obyektif. Harga c sedikit beragam sewaktu lensa obyektif bergerak masuk atau keluar untuk pembidikan berbeda, tetapi biasa dianggap tetapan. C = c + f. C disebut tetapan stadia, walaupun sedikit berubah karena c d. = jarak dari titik pumpun di depan teropong ke rambu. D = C + d = jarak dari pusat instrumen ke permukaan rambu Benang-benang silang jarak optis tetap pada transit, theodolite, alat sipat datar dan dengan cermat diatur letaknya oleh pabrik instrumennya agar faktor pengali f/i. Sama dengan 100. Tetapan stadia C berkisar dari kira-kira 0,75 sampai 1,25 ft untuk teropongteropong pumpunan luar yang berbeda, tetapi biasanya dianggap sama dengan 1 ft. Satu-satunya variabel di ruas kanan persamaan adalah R yaitu perpotongan R adalah 4,27 ft, jarak dari instrumen ke rambu adalah 427 + 1 = 428 ft. Yang telah dijelaskan adalah teropong pumpunan luar jenis lama, karena dengan gambar sederhana dapat ditunjukkan hubungan-hubungan yang benar. Lensa obyektif teropong pumpunan dalam (jenis yang dipakai sekarang pada instrumen ukur tanah) mempunyai kedudukan terpasang tetap sedangkan lensa pumpunan negatif dapat digerakkan antara lensa obyektif dan bidang benang silang untuk mengubah arah berkas sinar. Hasilnya, tetapan stadia menjadi demikian kecil sehingga dapat dianggap nol.

Benang stadia yang menghilang dulu dipakai pada beberapa instrumen lama untuk menghindari kekacauan dengan benang tengah horizontal. Diafragma dari kaca yang modern dibuat dengan garisgaris stadia pendek dan benang tenaga yang penuh (gambar 2) memberikan hasil yang sama secara lebih berhasil guna. Faktor pengali harus ditentukan pada pertama kali instrumen yang dipakai, walaupun harga tepatnya dari pabrik yang ditempel di sebelah dalam kotak pembawa tak akan berubah kecuali benang silang, diafragma, atau lensa-lensa diganti atau diatur pada model-model lama. Untuk menentukan faktor pengali, perpotongan rambu R dibaca untuk bidikan horizontal berjarak diketahui sebesar D. Kemudian, pada bentuk lain persamaan faktor pengali adalah f/i.= (D-C)/R. Sebagai contoh: Pada jarak 300,0 ft interval rambu terbaca 3,01. Harga-harga untuk f dan c terukur sebesar 0,65 dan 0,45 ft berturut-turut; karenanya, C =1,1 ft. Kemudian f/i. = (300,01,1)/3,01 = 99,3. Ketelitian dalam menentukan f/i. Meningkat dengan mengambil harga pukul rata dari

beberapa garis yang jarak terukurnya berkisar dari 100500 ft dengan kenaikan tiap kali 100 ft.

2.

Pengukuran tachymetri untuk bidikan miring

Dengan benang silang tengah dibidikkan pada rambu ukur sehingga tinggi t sama dengan tinggi theodolite ke tanah. sudut vertikalnya (sudut kemiringan) terbaca sebesar # Perhatikan bahwa dalam pekerjaan tachymetri tinggi instrumen adalah tinggi garis bidik diukur dari titik yang diduduki (bukan TI, tinggi di atas datum seperti dalam sipat datar) m = sudut miring. Beda tinggi = D HAB = 50 (BA BB) . sin 2m + i t; t = BT Jarak datar = dAB = 100(BA BB) cos2m

Tabel-tabel, diagram, mistar hitung khusus, dan kalkulator elektronik telah dipakai oleh para juru ukur untuk memperoleh penyelesaiannya. Dalam Apendiks E memuat jarak-jarak horizontal dan vertikal untuk perpotongan rambu 1 ft dan sudutsudut vertikal dari 0 sampai 16, 74 sampai 90, dan 90 sampai 106 untuk pembacaan-pembacaan dari zenit). Sebuah tabel tak dikenal harus selalu diselidiki dengan memasukkan hargaharga di dalamnya yang akan memberikan hasil yang telah diketahui. Sebagai contoh; sudutsudut 1, 10 dan 15 dapat dipakai untuk mengecek hasil-hasil memakai tabel. Misalnya sebuah sudut vertikal 1500 (sudut zenit 75), perpotongan rambu 1,00 ft dan tetapan stadia 1ft, diperoleh hasil-hasil sebagai berikut. Dari tabel E-1: H = 93,30 x 1,00 +1 = 94,3 atau 94 ft Contoh : untuk sudut sebesar 416, elevasi M adalah 268,2 ft ; t.i. = EM = 5,6; perpotongan rambu AB = R = 5,28 ft; sudut vertikal a ke titik D 5,6 ft pada rambu adalah +416; dan C = 1 ft. Hitunglah jarak H, beda elevasi V dan elevasi titik O. Penyelesaian : Untuk sudut 1416(sudut zenith 8544) dan perpotongan rambu 1 ft, jarak-jarak horizontal dan vertikal berturut-turut adalah 99,45 dan 7,42 ft. Selanjutnya H = (99,45 x 5,28) + 1 = 526 ft V =(7,42 x 5,28)-0,08 =39,18+0,08 = 39,3 ft

Elevasi titik O adalah Elevasi O = 268,2 + 5,6 + 39,3 5,6 = 307,5 ft Rumus lengkap untuk menentukan selisih elevasi antara M dan O adalah ElevoelevM = t.i. + V pembacaan rambu Keuntungan bidikan dengan pembacaan sebesar t.i agar terbaca sudut vertikal, sudah jelas. Karena pembacaan rambu dan t.i berlawanan tanda, bila harga mutlaknya sama akan saling menghilangkan dan dapat dihapuskan dari hitungan elevasi. Jika t.i tak dapat terlihat karena terhalang, sembarang pembacaan rambu dapat dibidik dan persamaan sebelumnya dapat dipakai. Memasang benang silang tengah pada tanda satu foot penuh sedikit di atas atau di bawah t.i menyederhanakan hitungannya. Penentuan beda elevasi dengan tachymetri dapat dibandingkan dengan sipat datar memanjang t.i. sesuai bidikan plus, dan pembacaan rambu sesuai bidikan minus. Padanya ditindihkan sebuah jarak vertikal yang dapat plus atau minus, tandanya tergantung pada sudut kemiringan. Pada bidikan-bidikan penting ke arah titiktitik dan patok-patok kontrol, galat-galat instrumental akan dikurangi dengan prosedur lapangan yang baik menggunakan prinsip timbal balik yaitu, membaca sudutsudut vertikal dengan kedudukan teropong biasa dan luar biasa. Pembacaan langsung pada rambu dengan garis bidik horizontal (seperti pada sipat datar), bukan sudut vertikal, dikerjakan bila keadaan memungkinkan

untuk menyederhanakan reduksi catatan-catatan. Tinjauan pada suatu tabel menunjukkan bahwa untuk sudut-sudut vertikal di bawah kirakira 4, selisih antara jarak mirng dan jarak horizontal dapat diabaikan kecuali pada bidikan jauh (dimana galat pembacaan jarak juga lebih besar). Dengan demikian teropong boleh miring beberapa derajat untuk pembacaan jarak optis setelah membuat bidikan depan yang datar untuk memperoleh sudut vertikal.

BAB V KESIMPULAN

1.

Metode tachymetri didasarkan pada prinsip bahwa pada segitiga-segitiga sebangun, sisi yang sepihak adalah sebanding, dan untuk detail-detail bentuk tidak beraturan.

2.

Pengukuran yang digunakan dengan metode tachymetry adalah : * Pengukuran tachymetri untuk titik bidik horizontal * Pengukuran tachymetri untuk bidikan miring

4.

Pengukuran dan pemetaan pada dasarnya dapat dibagi 2, yaitu : a. Geodetic Surveying b. Plan Surveying

5.

Geodetic surveying merupakan ilmu seni dan teknologi untuk menyajikan informasi bentuk permukaan bumi baik unsur alam maupun buatan manusia di bidang lengkung (luas > 55 km x 55 km) atau (>0,5 x 0,5).

6.

Plan surveying merupakan ilmu seni dan teknologi untuk menyajikan informasi bentuk permukaan bumi baik unsur alam maupun buatan manusia di bidang lengkung (luas < 55km x 55 km) atau (