Top Banner

of 25

Ox Id at Ions

Apr 06, 2018

Download

Documents

Keelex101
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/2/2019 Ox Id at Ions

    1/25

    Oxidations at CarbonGeneral referencesMarch, Advanced Org Chem, 1992, 1158-1238Trost, Comp. Org. Syn. 1991, vol 7Carey and Sundberg, Advanced Org Chem, part B, 615-664Smith, Org Syn, Chap 3

    HCH3

    C(-IV)

    RCH3

    C(-III)

    RCH2

    OH

    C(-1)

    RCH

    OH

    RR

    H2C

    R

    C(-II)

    RC

    O

    R

    C(0)

    RCH

    O

    C(+I)

    HCH2

    OH

    C(-II)

    HCH

    O

    C(0)

    C(II)

    RCOR

    O

    C(+III)

    HCOH

    O

    C(+II)

    O

    C

    O

    C(+IV)

    ROCOR

    O

    C(+IV)alkaneRCH2MRCH2SiR3

    RCH2X X=halideRCH2NR2RCH2SRRCH2PR2

    Acetal: RCH(OR)2

    CH

    OR

    Masked form:

    RHC NResteramidethioesternitrileRCX3

    Ortho ester: RC(OR)3Masked form:

    O

    C

    OR

    OR

    Ketene Ketene acetal

    carbamateO

    NR2RO

    xanthateS

    SRRO

    urea

    O

    NH2H2N

    carbodiimideRN C NR

    isocyanate

    RN C O

    isonitrile R N C

    Ketal: R2C(OR)2aminal: R2C(OR)(NR2)

    dithiane: R2C(SR)2Imine: R2C NR

  • 8/2/2019 Ox Id at Ions

    2/25

    Chromium-based Oxidations Very powerful oxidants

    Many variations on the themeReactivity modulated by ligands on Cr (Org. Rxn., 1998,53, 1-122)

    Likely pretty toxic

    H2CrO4Jones reagentAs solution with H2SO4 in acetone/waterVery strong and not very selectiveMechanism has been studied extensively

    Predominant mechanism likely to be Cr(VI) --> Cr(IV), taken as prototype for other Cr-based reagents

    Mechanism: See Westheimer J. Phys. Chem. 1959, 538; Chem Rev. 1949, 419Involving radical intermediates: Wieberg, JACS, 1974, 1884Involving Cr(IV) --> Cr(II) Espenson, JACS, 1992, 4205

    Consensus mechanism:

    OH

    O

    Cr

    O

    O-HO

    (H2CrO4 pKa = -1)

    +

    O

    CrO

    OHO

    OH+

    Cr

    O

    OHO

    +

    H

    H O

    CrOHHO

    +

    O

    Evidence: kH/kD = 6

    rate = d[Cr(VI)]/dt = (k1[H+] + k2[H

    +]2)[HCrO4][ROH] k1/k2 = 0.04

    O

    CrO

    OO

    'instantaneous'

    pyridine

    O

    k1

    k2

  • 8/2/2019 Ox Id at Ions

    3/25

  • 8/2/2019 Ox Id at Ions

    4/25

    Jones Reagent: Reactivity

    Jones reagent can promote acid-catalyzed reactions (desilylation, Friedel-Crafts type, olefin migrations, epoxideopenings) and diol cleavage, as in the examples below.

    C8H17

    AcOO

    Jones Reagent

    85%

    AcOOH

    OH

    AcOO

    O

    AcO O CO2H

    TL, 1988, 6403

    BnOOTBS

    OCO2CH3

    BnO CO2H

    OCO2CH3

    88-97%

    P. A. Evans, ACIEE, 1999, 3175

  • 8/2/2019 Ox Id at Ions

    5/25

    Cr-amine reagentsreview: Org. React. 1998, 1-122

    added amine helps moderate reactivity of Cr and buffers reaction mixture

    Three common reagents:

    CrO3Py2(Collins Reagent):hydroscopic, often requires excess, if dry will stop at aldehyde

    [ClCrO3][PyH] (pyridinium chlorochromate, PCC, Corey's reagent):often oxidant of choice for first

    attempt, used in cunjuction with mol sieves (to keep dry and prevent clumping) or Celite (usually 1:1

    mass ratio for both); Air stable, not too hydroscopic; will stop at aldehyde

    (PyH+)2Cr2O7(pyridinium dichromate, PDC):in CH2Cl2, alcohol to aldehyde; more often used in DMF

    for alcohol to acid

    OH

    CrO3Py26 equiv O

    JOC, 1971, 2035

    84%

    OH O

    CrO3Py2

    96%

    Tet, 1974, 2027

    O

    OBzO

    HO

    CH3

    CH3

    CrO3Py2

    67%O

    OBzO

    O

    CH3

    CH3TL, 1985, 3731

    O

    O

    AcO

    OH

    PCC

    O

    O

    AcO

    O

    81%

    JOC, 1992, 3789

    OH

    O

    PCC

    98%

    Examples

  • 8/2/2019 Ox Id at Ions

    6/25

    Cr-amine reagentsexamples, cont.

    O

    OH

    O

    O

    PCC70%

    De Brabander, OL, 2002, 481

    O

    OH

    OEt

    OPv PDC

    O

    O

    OEt

    OPv

    JOC, 1986, 2717

    AcO

    OO O

    BnO

    AcO

    OO O

    BnO

    OH

    PDC

    DMF>78%

    JOC, 1985, 2095

    NH

    OH

    OTBSH H

    ONH

    OH

    OTBSH H

    O

    O

    PDCDMF

    91%

    Tet, 1988, 2149

  • 8/2/2019 Ox Id at Ions

    7/25

    Cr-amine reagentsalternative reaction manifolds

    OH

    PCC

    O OH O

    H3CO

    CO2CH3

    H3CO

    CO2CH3

    PDC

    O

    40%

    JACS, 1987, 3991HO

    PCC, NaOAc

    CHOTet, 1980, 3091

    OHO

    Cr OHO

    O

    OCr O

    HOO

    or

    O Cr OHO

    O

    O OOHH H

    repeat

    repeat

    [2+2]

    McDonald, JACS, 1994, 7921similar reactivity with Mn: JOC, 2004,3386; with Re JACS 1997, 6022

    9%

  • 8/2/2019 Ox Id at Ions

    8/25

    Cr-mediate synthesis of ,-disubstituted enonesDauben, JOC, 1977, 682

    overall transformation:

    OR-MPCC

    R

    O

    mechanism

    O

    OH

    R

    R-M O

    R

    CrOO

    OH

    no H to eliminate

    [3,3]

    OCrO3HH

    R

    O

    examplesO

    MeLi;PCC

    O

    90%

    O

    MeLi;PCC

    90%

    O

    O

    MgB r

    CHO

    62%

  • 8/2/2019 Ox Id at Ions

    9/25

    Activated DMSO oxidations

    DCC (Pfitzner-Moffatt oxidation) JACS, 1963, 3027Ac2O JACS, 1967, 2416SO3-Pyridine (Perikh-Doering oxidation) JACS, 1967, 5505Cl2 TL, 1973, 919SOCl2 Tet, 1978, 1651(COCl)2 (Swern oxidation) JOC, 1978, 2480

    Many activating agents are available. Some of the more common:

    General mechanism

    O-

    S+ + X Y

    activating agent

    O

    S+

    X

    HO R

    S+

    O

    R

    R3NS+

    O

    R

    H-

    H R

    O R

    R

    R

    R

    +

    S

    (so please keepeverything in thehood!)

    an added step with (COCl)2 as activating agent:

    O

    S+

    O

    O

    Cl

    Cl-

    S+

    Cl

    CO2 + CO + Cl- +

    HO

    R

    R

    S+

    O

    R

    Ras above

  • 8/2/2019 Ox Id at Ions

    10/25

    Activated DMSO oxidationsApplications

    Very mild conditionsReactions are very fast and reliableNever go to acidInexpensive and nontoxic reagents

    positives negatives

    Carbodiimide-derived urea hard to remove in Moffatt(use of EDCI partially addresses this problem)

    Opperationally more involved that some other methods(but still pretty easy)

    Pummerer rearrangement can interfere (see below)DMS angers the biologists

    Examples

    O N

    O OH

    H3C

    O

    i-Pr

    O N

    O O

    CH3

    O

    i-Pr

    O N

    O O

    H3C

    O

    i-Pr

    [O]+

    [O] Ratio

    80-90%

    CrO3, Py, rt

    Jones

    PCC

    PDC, Py, TFA

    SO3-Py, DMSO, Et3N, 0oC

    73:27

    79:21

    92:8

    97:3

    99:1

    Evans, JACS, 1984, 1154

  • 8/2/2019 Ox Id at Ions

    11/25

    Activated DMSO oxidationsApplications

    O O OTBDPS

    BrH

    OH(ClCO)2, DMSO; Et3N

    86%

    O O OTBDPS

    BrH

    O

    Falck, OL, 2002, 969

    HO

    HHO

    OBn

    O

    HO

    OBn

    (COCl)2, DMSO;Et3N;

    NH3

    not isolated

    N

    H

    OBn

    Heathcock JACS, 1988, 8734

    HO

    OTES OMe

    OMOM

    SO3-Py, DMSO, Et3N90%

    O

    OTES OMe

    OMOM

    De Brabander, ACIEE, 2003, 1648

  • 8/2/2019 Ox Id at Ions

    12/25

  • 8/2/2019 Ox Id at Ions

    13/25

  • 8/2/2019 Ox Id at Ions

    14/25

    Hypervalent Iodine-based reagents

    the Dess-Martin reagent

    I

    CO2H

    KBrO3/H2SO4

    (D.&M. JACS 1991, 7277)

    orOxone (KHSO5 + sulfate salts)(JOC, 1999, 4537)

    OI

    OHO

    O IBX

    low solubility in most organic

    solvents (but, see below)explosive on impact or >200oC

    Ac2O,

    AcOHO

    I

    O

    AcO

    OAc

    AcO

    Dess-Martin periodinane(DMP)

    Commercially availableAdvantages of DMP:Reliable with complex molecules

    Often need ~1 equiv

    Effective for 1o or 2o ROH; never go to acid

    Easy to use (nearly idiot-proof)

    Mechanism:

    O

    I

    O

    AcO

    OAc

    AcO

    O

    I

    O

    O

    OAc

    AcORCH2OH-AcOH

    Bpath a path a (added base doesn't help)

    path b

    O

    I+

    O

    AcO

    -OAc (added aciddoesn't help)

    O

    I

    O

    O

    O

    AcOO

    O

    I+

    O

    O

    AcOO-

    tight ion pair

    orpath c O

    R

    H

    O H

    HO

    H

  • 8/2/2019 Ox Id at Ions

    15/25

    Hypervalent Iodine-based reagents

    one equivalent of water was found to accelerate the reaction: Schreiber, JOC, 1994, 7549

    O

    I

    O

    O

    O

    AcOO

    H

    vs

    O

    I

    O

    O

    O

    HOO

    HMore e- donating

    than OAc...

    ...so acetate is more basic

    in practice, often easiest to use CH2Cl2 out of he bottle (not distilled)

    Ph

    OH

    Ph

    O

    DMP

    conditions results

    Dry CH2Cl21.1 equiv H2O

    97%, 14h97% 0.5h

    SciFinder search yielded 104,000 hits for DMP

    Other examples:

    O

    O

    OHH3CO

    O

    O

    OH3CO

    DMP70%

    Danishefsky, JACS, 1988, 6890

  • 8/2/2019 Ox Id at Ions

    16/25

    Hypervalent Iodine-based reagents: examples

    O

    OOMe

    OMOM

    CH3

    OH

    O

    OOMe

    OMOM

    CH3

    O

    DMP95%

    De Brabander, JACS, 2002, 3245

    O

    BnO2C CO2BnOTMS

    O

    O

    O

    O

    BnO2C CO2BnOTMS

    O O

    O

    CHOOH

    DMP93%

    Nicolaou, ACIEE, 1994, 2184

    O

    SiO

    t-Bu

    t-Bu

    OHPMBO

    N O

    OMe

    O

    SiO

    t-Bu

    t-Bu

    OPMBO

    N O

    OMe

    DMP>95%

    Evans, JACS, 1990, 7001

  • 8/2/2019 Ox Id at Ions

    17/25

    IBX

    O

    I

    OHO

    O

    Insoluble in most organic solvents, but somewhat soluble in DMSO. For alcohol to

    carbonyl, see TL, 1984, 8019 (why did it take 10 years for someone to try DMSO??)

    diol to lactone:

    OH

    OH(how did they make this?)

    IBX, DMSO, rt

    O

    OH

    82%

    TIPS

    OH

    MeOHO

    IBX, DMSO, rt

    82%

    TIPS

    MeOOH

    H

    OHCorey, TL, 1995, 3485

    alcohol to carbonyl to enone:

    OH

    2.3 equiv IBX

    65 oC, DMSO

    O O

    H

    IO

    OHO

    OH

    O

    88%

    Nicolaou, JACS, 2000,7596

    other examples

    N

    O

    84%

    O

    H

    H

    TIPS

    87%

    O

    O

    H H

    72%

  • 8/2/2019 Ox Id at Ions

    18/25

    TPAPreviews: Ley, Synthesis, 1994, 639

    Ru(VII) is a strong oxidantreacts rather indescriminately as basic, aq solutionTetra-alkyl amonium counterion modulates reactivitymost successful recipe:

    OHTPAP (5mol%)NMO

    4AMS, CH2Cl2

    O TPAP = [n-Pr4N][RuO4] = TetraPropylAmmonium PerruthenateNMO = N-Methyl Morpholine N-Oxide

    N+

    O

    O-H3C

    Advantages:Homogeneous solutionsEasy setup/workupSuitable for complex molecules

    Mechanism:Problem is how to use a 3e- oxidant for a 2e- oxidation?

    3RCH2OH + 2Ru(VII) 3RCHO + 2Ru(IV)

    OH

    radical conditionsO

    TPAPO

    2e- processes dominate

    2Ru(VII)

    OHR

    OR

    2 Ru(V)

    Ru(IV)+

    Ru(VI)

    2 Ru(IV)

    2

    2

    OHR

    OR

    3 NMO

    3 Morpholine

    single e- transfer

    (set)

  • 8/2/2019 Ox Id at Ions

    19/25

    TPAP: examples

    ZHNO

    HN

    O

    N

    OH

    O

    HN

    NH

    O

    C6H4(o-NO2)

    Br

    ZHNO

    HN

    O

    N

    O

    O

    HN

    NH

    O

    C6H4(o-NO2)

    Br

    TPAP (5mol%)

    NMO (150 mol%)MS4A78%

    Harran, ACIEE, 2001, 4766

    OTBDPSO

    TPAP: 70%Swern: 38%MnO2: 0%

    O

    O

    OTBDPS

    TPAP: 70%Swern: 35%

    O

    OO

    OBn

    H

    TPAP: 91%

    O

    Ph

    O

    Ph

  • 8/2/2019 Ox Id at Ions

    20/25

    N-oxoammonium mediated oxidationsreviews: Synthesis, 1996, 1153; Heterocycles, 1988, 509

    overall transformation:OH

    N

    OH

    H

    +

    N-oxoammonium

    X- OO

    N+ + + HX

    Mechanism:3 proposals in the literature

    N+

    O-O

    H

    N+

    OHO

    H

    B

    NO

    OH

    similar to Cope elimination similar to Hofmann elimination

    Ganem, JOC, 1975, 1998-2000; Semmelhack, TL, 1986, 1119; Bobbitt, JOC, 1991, 6110

    N-oxoammonium salts are too unstable to store; always prepared in situ using catalytic nitroxyl radical and

    stoichiometric oxidant.

    TEMPO is most successful. Catalyzes oxidation of 1o and 2o alcohols to aldehydes and ketones.

    For a list of stoichiometric oxidants, see JOC, 1997, 6974

    N

    O

    2,2,6,6 tetramethylpiperidinyloxyl radical(TEMPO)

    mCPBA, NaOCl, oxone, PhI(OAc)2, etcN+

    O

  • 8/2/2019 Ox Id at Ions

    21/25

    N-oxoammonium mediated oxidations: examples

    OH

    N

    O

    BocTEMPO, NaOCl, NaBrEtOAc/Toluene/Water

    90% O

    N

    O

    Boc

    Tetrahedron, 1998, 6051

    O

    BnO OBn

    BnO

    OH TEMPO, PhI(OAc)2

    O

    BnO OBn

    BnO

    O

    PhS

    OH

    TEMPO, PhI(OAc)2PhS

    O

    JOC, 1997, 6974

    OH

    HN

    HCl

    mCPBA

    OO

    JOC, 1977, 2077

    OH

    OH8

    TEMPO (10 mol%) TBACl (10mol%)NCS (1.5 equiv)

    OH

    O8JOC, 1996, 7452

  • 8/2/2019 Ox Id at Ions

    22/25

    MnO2

    Metal oxide used for selective oxidation of allylic and benzylic alcohols; other pathways available'MnO2' only an approximation, really MnOx where 1.93

  • 8/2/2019 Ox Id at Ions

    23/25

    Sodium Chlorite (NaClO2)Reagent of choice for aldehyde --> acidOften see 2 step (e.g. Swern + NaClO2) rather than Jones OxidationUsually include 2-Methyl-2-butene to trap reactive Cl2

    O

    Cl

    O

    -O

    H2O

    OH

    OH O

    OH

    ClOH

    OH

    H

    O

    OH

    + NaOCl

    ClO2-

    H

    CHO

    TBSO

    H

    CO2H

    TBSO

    NaClO2, NaH2PO42-Me-2-ButenetBuOH/H2O

    JOC, 1980, 4825

    O

    MeO

    TesO

    OMeBnO

    OMeO

    OMOM

    NaClO2, NaH2PO42-Me-2-ButenetBuOH/H2O

    O

    MeO

    TesO

    OMeBnO

    CO2HMeO

    OMOM

    >80%

    De Brabander,ACIEE, 2003, 1648

    O

    OBu3Sn

    HO

    CH31.TPAP, NMO2. NaClO2, NaH2PO4,2-Me-2-Butene, tBuOH/H2O

    O

    OBu3Sn

    HO2C

    CH3

    >52%

    Nicolaou, Chem Com.1999, 809

    examples:

    mechanism:

  • 8/2/2019 Ox Id at Ions

    24/25

    NaClO2/TEMPOA one pot method for alcohol --> acid has been developed by Merck ProcessJOC, 1999, 2564

    OH

    TEMPO (7 mol%)NaOCl (2 mol%)NaClO2 (2 equiv)pH 6.7, CH3CN/H2O

    O

    OH

    NO

    N

    O

    OH

    O

    N

    OH

    O O

    OH

    NaClO2

    NaOCl

    NaOCl

    NaCl

    Examples

    N

    O

    OHO2C

    Ph

    95%

    PhCO2H

    NHCbz

    85%

    Ph

    CO2H

    95%

  • 8/2/2019 Ox Id at Ions

    25/25

    Oppenauer OxidationReview: Syn 1994, 1007

    OH

    R R

    +

    O O

    H

    OM

    O

    R R

    +

    OHOppenauer

    Oxidation

    Meerwein-Ponndorf-Verlely (MPV)

    reduction

    M is usually hard Lewis acidAl, Zr, Ti, La most common-Lewis acid activation of carbonyl

    -Alkoxide formation-PreorganizationOppenauer and MPV infrequently used

    Mild conditions, never go to acidThermodynamic controlCan see product inhibition (requires high [catalyst]):

    i.e.O

    M

    H

    O

    R R

    M

    Hsubstrate

    slow

    examples

    OH Al(OtBu)3

    OO

    JACS, 1960, 1240

    O

    90%

    SePh

    OH

    Al2O3Cl3CCHO

    SePh

    O

    TL, 1977, 3227