Top Banner
ORAL HYPOGLYCEMIC AGENT’S MR.VAIBHAV B. TEKADE B.PHARM Vth SEM
21

ORAL HYPOGLYCEMIC AGENTS MEDICINAL CHEMISTRY

Apr 15, 2017

Download

Health & Medicine

saurabh badole
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ORAL HYPOGLYCEMIC AGENTS MEDICINAL CHEMISTRY

ORAL HYPOGLYCEMIC AGENT’S

MR.VAIBHAV B. TEKADEB.PHARM Vth SEM

Page 2: ORAL HYPOGLYCEMIC AGENTS MEDICINAL CHEMISTRY

Referred to as “Anti-diabetic medication”.

Drugs used in the treatment of diabetes mellitus by lowering the blood glucose level.

These are administered orally and are thus also called as oral hypoglycemic agents or oral ant hyperglycemic agents.

There are different class of antidiabetic drugs and their selection depends on nature of diabetes ,age ,and situation of the person as well as other factors

Page 3: ORAL HYPOGLYCEMIC AGENTS MEDICINAL CHEMISTRY

Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action or both.

There are 2 major types of DM• Type 1- Immune β-cell destruction or idiopathic, leading to absolute insulin deficiency• Type 2- Insulin resistance with relative insulin deficiency or insulin secretory defects with insulin resistance

DIABETES MELLITUS

Page 4: ORAL HYPOGLYCEMIC AGENTS MEDICINAL CHEMISTRY

Other types include• Gestational Diabetes-Diabetes

diagnosed in the second or third trimester of pregnancy that is not clearly shown diabetes

• Specific types of diabetes due to other cause-Neonatal diabetes, maturity –onset diabetes of the,disease of the exocrine pancreas and drug or chemical induced diabetes.

Page 5: ORAL HYPOGLYCEMIC AGENTS MEDICINAL CHEMISTRY

SULPHONYLUREASNON-SULPHONYLUREAS (MEGLITINIDES)

THIAZOLIDINEDIONESBIGUANIDEALPHA-GLUCOSIDASE INHIBITORS

CLASSIFICATION OF ORAL HYPOGLYCEMIC

AGENTS

Page 6: ORAL HYPOGLYCEMIC AGENTS MEDICINAL CHEMISTRY

Contain sulphonyl and urea groupThe sulphonyl portion is very water

soluble,it has am acidic amine and oxygen atoms for good hydrogen bonding

R1 and R2 are very lipophilic and account for differences in overall potency,metabolism,duration and routes of elimination

Overall drugs tend to be lipophilic and ionised at body pH

They are weak acids with a pKa equivalent 5-6

Second generation much more lipophilic than the first and hence more potent

They stimulate secretion of insulin from the functioning β-cells of the intact pancreas

Sulphonylureas are similar in chemistry to the sulphonamides and thus potentially share toxicities and allergies

SULFONYLUREASE

Page 7: ORAL HYPOGLYCEMIC AGENTS MEDICINAL CHEMISTRY

MECHANISM OF SULFONYLUREASE

Page 8: ORAL HYPOGLYCEMIC AGENTS MEDICINAL CHEMISTRY

SAR:-R1 Must be lipophilic Must have an aromatic ring next to the sulfoxide

groups have a phenyl ring Should have a substitutent at the para position.

Methyl, amino, acetyl, chloro, bromo, metyithio and trifluorometyl enhance hypoglycemic activity.

The larger, more complex, para substituents comprise the 2nd generation. The ethylcarboxamide appears to be very potent in these drugs which may be due to the distance from the carboxamide nitrogen to the sulfonamide nitrogen and how its binds to the receptor.

R2 Must be lipophilic Has some size constraints: N-metyl is inactive, N-ethyl

is low active, N-dodecyl and above are inactive N-propyl to N-hexyl are the most potent

Page 9: ORAL HYPOGLYCEMIC AGENTS MEDICINAL CHEMISTRY

TOLBUTAMIDE

CHLORPROPAMIDE

TOLAZAMIDE

ACETOHEXAMIDE

EXAMPLES:-

Page 10: ORAL HYPOGLYCEMIC AGENTS MEDICINAL CHEMISTRY

1st Generation:- In general these are eliminated in the urine as some parent

compound plus metabolites. Tolbutamide is one of the least potent oral hypoglycemics with

short duration due to rapid hydroxylationof para methyl substituents followed by oxidation to the acid.

In Chlorpropamide the para chloro protect from oxidation and thus has a longer duration than tolbutamide. Also increases lipid solubility to increase potency.

Tolazamide has a cyclic substituents that makes it approximately equal to chlorpropamide in potency even though the para substituents is the same as tolbutamide. Oxidized quickly as with tolbutamde, but the alcohol formed has reasonable activity (active metabolite) so its overall duration is longer than tolbutamide and shorter than chlorpropamide.

Acetohexamide possesses ketone group that is rapidly reduced to the alcohol but this is more active than the parent compound and has a longer half-life. The 4th position on the hexane ring is also hydroxylated. Duration is similar to tolazamide.

Page 11: ORAL HYPOGLYCEMIC AGENTS MEDICINAL CHEMISTRY

2nd Generation:- Due to their larger molecular size, biliary

excretion becomes important. Glyburide and Glipizide are hydroxylated

at the 3rd and 4th position on the cyclohexyl ring. Some metabolites are active so duration is longer than parent compound.

Glimepride, sometimes referred to as 3rd generation, is most potent of all sulfonylureas. The cyclohexyl metyl is hydroxylated then oxidized to the acid.

Page 12: ORAL HYPOGLYCEMIC AGENTS MEDICINAL CHEMISTRY

The meglitinide are nonsulfonylurease oral hypoglycemic agents used in the management of type 2 diabetes (NIDDM).

These agents tends to have rapid onset and short duration of action.

Mechanism of action is similar to that of sulfonylurease. There are two major difference between these two classes -- Meglitinide cause must faster insulin production than sulfonylurease -- Effects of metaglinides do not last as long as the effect of sulfonylurease

-- The effect of these class appear to last less than one hrs while sulfonylurease continue to stimulate insulin productin

for several hrs. As a result meglitinide should be taken 5 to 10 mins before

meal. There is less risk of hypoglycemia due to short duration of

action. Repaglinide excreted less than 0.2% by kidney which may be

advantage for elderly patient who are renally impaired.

NON-SULFONYLUREASE (MEGLITINIDE) :-

Page 13: ORAL HYPOGLYCEMIC AGENTS MEDICINAL CHEMISTRY

Repaglinide

Nateglinide

Examples:-

Page 14: ORAL HYPOGLYCEMIC AGENTS MEDICINAL CHEMISTRY

The thiazolindione represent a novel nonsulfonylurease class of hypoglycemic agents for the treatment of NIDDM.

Much like the sulfonylurease, the use of these agents requires a functioning pancreas that can successful secrete insulin from β-cell.

The thiazolindindione are highly selective agonist for the peroxisome proliferator –activated receptor-gamma(PPARG), which is responsible for improving glycemic control, primarily through the improvement of insulin sensitivity in muscle and adipose tissue.

Thiazolindione:-

Page 15: ORAL HYPOGLYCEMIC AGENTS MEDICINAL CHEMISTRY

MECHANISM OF THIAZOLIDINEDIONE

Page 16: ORAL HYPOGLYCEMIC AGENTS MEDICINAL CHEMISTRY

1)Rosiglitazone:-

2)Pioglitazone:-

Examples:-

Page 17: ORAL HYPOGLYCEMIC AGENTS MEDICINAL CHEMISTRY

Metformin:-

IUPAC:-N,N-dimethylimidodicarbonimidic diamide

These class of agents is capable of reducing sugar absorption from the gastrointestinal tract.

Also, they can --decrease gluconeogenesis --increasing glucose uptake by muscle and fat cells.These agents unable to stimulate the release of

insulin from the pancrase.

Bisguanidines:-

Page 18: ORAL HYPOGLYCEMIC AGENTS MEDICINAL CHEMISTRY

The enzyme α-glucosidase is present in the brush border of the small intestine and is responsible for cleaving dietary carbohydrates and facilitating their absorption into the body.

Inhibition of these enzyme allows less dietary carbohydrates to be available for absorption and, in turn, less available in the blood following a meal.

α-GLUCOSIDASE INHIBITORS:-

Page 19: ORAL HYPOGLYCEMIC AGENTS MEDICINAL CHEMISTRY

1)Acarbose:-

It is naturally occurring oligosacharide, which is obtained from the microorganism Actinoplanes utahensis.

It has high affinity for α-glucosidase enzyme due to its oligosacharides nature.

EXAMPLES:-

Page 20: ORAL HYPOGLYCEMIC AGENTS MEDICINAL CHEMISTRY

2)Miglitol:-

It is chemically known as 3,4,5-piperidinetriol It is soluble in water with pka 5.9 In chemical strcture, these agent is very similar

to sugar, with the heterocyclic nitrogen serving as isosteric replacement of the sugar oxygen.

This feature allows recognition by the α-glucosidase as a substrate.

This result in the competative inhibition of enzyme and delays the carbohydrates from the gastrointestinal tract.

Page 21: ORAL HYPOGLYCEMIC AGENTS MEDICINAL CHEMISTRY

THANK YOU........