Top Banner
1 Aeronautical Sciences Project OpenVSP with AVL Erik D. Olson NASA-Langley Research Center OpenVSP Workshop v3 Aug. 22, 2014
17

OpenVSP with AVL

Apr 12, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: OpenVSP with AVL

1

Aeronautical Sciences Project

OpenVSP with AVL

Erik D. Olson NASA-Langley Research Center

OpenVSP Workshop v3 Aug. 22, 2014

Page 2: OpenVSP with AVL

2

Aeronautical Sciences Project

Outline

• NASA EET AR12 Model

• Flap Modeling

• OpenVSP to AVL Conversion

• Validation Results

• Degenerate Geometry

Page 3: OpenVSP with AVL

3

Aeronautical Sciences Project

NASA EET AR12 Model

Morgan, H.L. and Paulson, J.W.: NASA TP-1580 (1979) L-78-1654

Page 4: OpenVSP with AVL

4

Aeronautical Sciences Project

NASA EET AR12 Model

• Langley 14x22 Wind Tunnel ca. 1978

• 12-foot span supercritical wing

• Full-span slats

• Part-span double-slotted flaps with cutout

• Moveable horizontal tail

• Flow-through nacelles, landing gear

• Morgan, H. L.: NASA TM-80048 (1979) and Morgan, H.L. and Paulson, J.W.: NASA TP-1580 (1979)

Page 5: OpenVSP with AVL

5

Aeronautical Sciences Project

EET AR12 OpenVSP Model

• Planform shape from configuration description

• Wing airfoils from tabulated coordinates

• Fuselage sections digitized from plotted cross sections

• No nacelles, gear or gear pod

• Wing twist added to Hermite export file using external utility

Page 6: OpenVSP with AVL

6

Aeronautical Sciences Project

Flap and Control Surface Layout

Constant-chord double-slotted flap (30% chord at e=0.383)

30% chord double-slotted flap

15.5% chord slat

15.5% chord slat

h = 0.096

h = 0.97 h = 0.97

h = 0.97 h = 0.71

h = 0.45

h = 0.383

Page 7: OpenVSP with AVL

7

Aeronautical Sciences Project

Modeling of Flap Effects

• In practice, the theoretical lift increment from linear theory cannot be realized

– inadequacy of linear theory at large flap angles

– viscous effects

– flow separation at large flap angles

• Apply a flap effectiveness factor, 𝜂𝛿

• Account for slotted flap chord extension

Page 8: OpenVSP with AVL

8

Aeronautical Sciences Project

Slotted Flap Effectiveness

Single-slotted Double- and triple-slotted

Page 9: OpenVSP with AVL

9

Aeronautical Sciences Project

Empirical Chord Extension Ratios

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

Dc

/ c f

Flap deflection, deg

single-slotted

double-slotted w/ fixed vane

double-slotted (variable geom)

Fowler, single-slotted, double-slotted w/ fixed vaneFowler, double- and triple-slotted

Page 10: OpenVSP with AVL

10

Aeronautical Sciences Project

Athena Vortex Lattice (AVL)

• Open-source (GPL) code developed at MIT (Drela & Youngren)

• Forces and moments, trim, steady rotation

• Stability derivatives w.r.t. angles, rotation, control surfaces

• Rigib-body, quasi-steady eigenmode analysis

• Incidence, camber, and control-surface or flap deflections modeled as normal-vector tilt only

Page 11: OpenVSP with AVL

11

Aeronautical Sciences Project

OpenVSP to AVL Conversion

• Uses OpenVSP Hermite (Xsec) file export with external HRM2AVL utility

• AVL lifting surface sections (leading-edge coordinate, chord, incidence) calculated from Hermite cross sections

• Lifting-surface sections converted to normalized airfoils camberline determined by AVL

• Cruciform fuselage interpolated from Hermite cross sections

• Flap chord extension built into model

Page 12: OpenVSP with AVL

12

Aeronautical Sciences Project

Cruise Wing

Takeoff Flaps

EET AR12 AVL Model

Uncambered wing carry-through

Segmented panels with local cosine spacing

Cruciform fuselage

Flap chord extension

Page 13: OpenVSP with AVL

13

Aeronautical Sciences Project

0.00.20.40.60.81.01.21.41.61.82.02.22.42.62.83.0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

CL

CD

AVL (ideal)AVL + DATCOMAVL + XfoilData

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

-4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24

Cm

angle of attack, deg

AVL (ideal)AVL + DATCOMAVL + XFoilData

Cruise Wing Validation Results

Mach 0.168, Rec = 1.37x106

0.00.20.40.60.81.01.21.41.61.82.02.22.42.62.83.0

-4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24

CL

angle of attack, deg

AVL (ideal)AVL + DATCOMAVL + XFoilData

XFoil CL,max = 1.79

• Actual 𝐶𝐿,max = 1.34

• Predicted 𝐶𝐿,max (XFoil) = 1.79 (+33%)

Page 14: OpenVSP with AVL

14

Aeronautical Sciences Project

Takeoff Wing Validation Results

0.00.20.40.60.81.01.21.41.61.82.02.22.42.62.83.0

-4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24

CL

angle of attack, deg

AVL (ideal)

AVL + DATCOM

Data

Cruise Wing Data

0.00.20.40.60.81.01.21.41.61.82.02.22.42.62.83.0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

CL

CD

AVL (ideal)

AVL + DATCOM

Data

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

-4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24

Cm

angle of attack, deg

AVL (ideal)

AVL + DATCOM

Data

Mach 0.168, Rec = 1.37x106

• Actual 𝐶𝐿,max = 2.51

• Predicted 𝐶𝐿,max (Xfoil + empirical Dcl,max) = 2.41 (-4.0%)

XFoil CL,max = 2.41

Page 15: OpenVSP with AVL

15

Aeronautical Sciences Project

Landing Wing Validation Results

Mach 0.168, Rec = 1.37x106

0.00.20.40.60.81.01.21.41.61.82.02.22.42.62.83.0

-4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24

CL

angle of attack, deg

AVL (ideal)

AVL + DATCOM

Data

Cruise Wing Data

0.00.20.40.60.81.01.21.41.61.82.02.22.42.62.83.0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

CL

CD

AVL (ideal)

AVL + DATCOM

Data

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

-4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24

Cm

angle of attack, deg

AVL (ideal)

AVL + DATCOM

Data

• Actual 𝐶𝐿,max = 2.82

• Predicted 𝐶𝐿,max (Xfoil + empirical Dcl,max) = 2.77 (-1.8%)

XFoil CL,max = 2.77

Page 16: OpenVSP with AVL

16

Aeronautical Sciences Project

OpenVSP v3.0 Degenerate Geometry

OpenVSP Model Plate Export

Page 17: OpenVSP with AVL