Top Banner

of 28

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    1/28

    BETA NUR PRATIWIM0211012)

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    2/28

    What is OTEC ?OTEC ocean thermal energy conversion) :sistem konversi energi panas laut menjadi energi listrik.

    FUNDAMENTALS 75% of the Earth Covered by water

    Ocean water stores much more heat than theatmosphere

    (Jackie Rowley)

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    3/28

    Lockheed Martin

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    4/28

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    5/28

    History 1881: Jacques Arsene d'Arsonval, a French physicist, was the

    first to propose tapping the thermal energy of the ocean.

    Georges Claude, a student of d'Arsonval's, built anexperimental open-cycle OTEC system at Matanzas Bay, Cuba,in 1930. The system produced 22 kilowatts (kW) of electricityby using a low-pressure turbine. In 1935, Claude constructedanother open-cycle plant, this time aboard a 10,000-ton cargovessel moored off the coast of Brazil. But both plants weredestroyed by weather and waves, and Claude never achievedhis goal of producing net power (the remainder aftersubtracting power needed to run the system) from an open-cycle OTEC system.

    1956: French researchers designed a 3-megawatt (electric)(MWe) open-cycle plant for Abidjan on Africa's west coast.But the plant was never completed because of competitionwith inexpensive hydroelectric power.

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    6/28

    History Contd

    1979: The first 50-kilowatt ( (kWe)

    closed-cycle OTEC demonstrationplant went up at NELHA.

    Known as "Mini-OTEC," the plantwas mounted on a converted U.S.Navy barge moored approximately 2kilometers off Keahole Point. The

    plant used a cold-water pipe toproduce 52 kWe of gross power and15 kWe net power.

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    7/28

    1993: An open-cycle OTEC plant at Keahole Point, Hawaii,produced 50,000 watts of electricity during a net power-

    producing experiment. This broke the record of 40,000 watts set by a Japanese system

    in 1982.

    Today, scientists are developing new, cost-effective, state-of-the-art turbines for open-cycle OTEC systems, experimentingwith anti corroding Titanium and plastics as rotor material.

    The new designs for OTEC are still mostly experimental. Onlysmall-scale versions have been made. The largest so far is nearJapan, and it can create 100 kilowatts of electricity.

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    8/28

    OTEC Description

    Oceanic Thermal Energy Conversion

    OTEC utilizes the oceans 20C natural thermal gradiebetween the warm surface water and the cold deep sea watto drive a Rankine Cycle

    OTEC utilizes the worlds largest solar radiation collectorthe ocean. The ocean contains enough energy power all the worldselectrical needs.

    12/18/2009 8OTEC African Deployment

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    9/28

    OTEC System P-Diagram

    OTEC

    System

    ControlsWater Pump

    Fluid Pump

    OTEC CPU

    Turbine

    Generator

    Heat Exchangers

    Pipes

    Working fluid

    (Noise Factors)

    Temperature

    Sea state

    Weather

    Corrosion

    (Output Functions)

    Power

    Water

    (Input Signals)

    Water

    Startup Power

    9OTEC African Deployment

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    10/28

    Operational Concept

    System Boundary

    Power PlanControl

    SystemWarm Seawater isExternal Input

    Cold Seawater is

    External Input

    Power

    Plant

    O

    12/18/2009 10OTEC African Deployment

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    11/28

    Open-Cycle

    Open-cycle OTEC uses the tropical oceans' warm surfacewater to make electricity. When warm seawater is placed in alow-pressure container, it boils. The expanding steam drives alow-pressure turbine attached to an electrical generator. Thesteam, which has left its salt behind in the low-pressurecontainer, is almost pure fresh water. It is condensed backinto a liquid by exposure to cold temperatures from deep-ocean water.

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    12/28

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    13/28

    Closed-Cycle (Rankine)

    Closed-cycle systems use fluid with a low-boiling point, suchammonia, to rotate a turbine to generate electricity. Here's hoit works. Warm surface seawater is pumped through a heexchanger where the low-boiling-point fluid is vaporized. Texpanding vapor turns the turbo-generator. Then, cold, deseawaterpumped through a second heat exchangercondenses the vapor back into a liquid, which is then recyclthrough the system.

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    14/28

    Laju amonia menguap(kg/s)

    h:entalphi

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    15/28

    Hybrid SystemHybrid systems combine the features of both the closed-cycleand open-cycle systems. In a hybrid system, warm seawaterenters a vacuum chamber where it is flash-evaporated into

    steam, similar to the open-cycle evaporation process. Thesteam vaporizes a low-boiling-point fluid (in a closed-cycleloop) that drives a turbine to produces electricity.

    Ammonia is the working flu

    Warm sea water is flashed is then used to vaporammonia

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    16/28

    MAIN COMPONENTS OF AN OTEC SYSTEM Evaporators

    Condensers

    Cold-water pipe

    Turbines

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    17/28

    HEAT EXCHANGERS

    In an advanced plate-and-fin design,working fluid and seawater flowthrough alternating parallel plates; finsbetween the plates enhance the heattransfer

    Original material chosen Titanium -Expensive, so alternative material Aluminium.

    Selected Aluminium alloys may last 20years in seawater.

    Characterized by low pressure ratios and high mass flow of working fluidsThe turbine is to be designed to have a good isentropic expansion efficover a considerable range of pressure ratio

    TURBINES

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    18/28

    Otec production of electricity

    Nomi

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    19/28

    ECONOMIC CONSIDERATIONS

    OTEC needs high investmentEfficiency only 3% - low energy density large heat transfer equipment

    therefore more cost

    F b id d hil h i i

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    20/28

    Factors to be considered while choosing a site:

    Thermal gradient in the ocean

    Topography of the ocean floor

    Meteorological conditions hurricanes

    Seismic activity Availability of personnel to operate the plant

    Infrastructure airports, harbors, etcilabilityof shoreline sites

    Offshore

    Distance,

    km

    Capital

    Cost, $/kW

    10 4200

    50 5000

    100 6000

    200 8100

    300 10200

    400 12300

    Cost Estimates for 100 MW CC-OTEC Plantship(COE for 10 % Fixed Rate, 20 years, Annual Operation & Maintenance 1

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    21/28

    POTENTIALEquatorial, tropical and sub-tropical regions i.e.

    20 N to 20 S, have favorable temperature profile Total estimated potential 577000 MW 99 nations and territories have access to the

    OTEC thermal resource:

    AmericasMainland - 15AmericasIsland - 23AfricaMainland - 18AfricaIsland - 5Indian/Pacific OceanMainland - 11Indian/Pacific OceanIsland - 27

    Countries with access to deep ocean water withshore and favorable business climate:

    AmericasMainland - 1, Mexico

    AmericasIsland - 12

    AfricaMainland - 1, Tanzania

    AfricaIsland - 1, Madagascar

    Indian/Pacific OceanMainland - 1, India

    Indian/Pacific OceanIsland

    E i t l A t

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    22/28

    Environmental Aspects

    Positives:

    Environmentally benign - no toxic products are released

    Carbon di oxide emission - less than 1% of fossil fuel plant

    Nutrient rich coldwaterpromotes mariculture

    Chilled soil agriculture promotes growth of temperatecrops in tropical regions.

    Cold water for air conditioning

    Fresh water production (1 MW plant -> 4500 m3)

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    23/28

    Promotes mariculture

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    24/28

    Environmental Aspects

    Negatives:

    Fish eggs and larvae entrained, destroyed Sterilization of land by land based plants

    Floating plants navigational hazard

    Metal pieces entrained affects marine orgs.

    Mixing of warm and cold sea water

    OTEC is yet untested on large scale over a long period of

    time

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    25/28

    Records available from experimental plants demonstrtechnical viability and provide invaluable data on toperation of OTEC plants. The economic evaluation OTEC plants indicates that their commercial future liesfloating plants of approximately 100 MW capacity industrialized nations and smaller plants for small-islandeveloping-states

    Small OC-OTEC plants can be sized to produce from 1 Mto 10 MW of electricity, and at least 1700 m3to 3500 m3

    desalinated water per day.

    The Future

    O C &

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    26/28

    210kW OC-OTEC Experimental Plant (1993-1998) in Hawaii

    OTEC R&D

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    27/28

    Prospek di IndonesiaUntuk lautan di wilayah Indonesia, potensi termal 2,5 x 1023 joule

    dengan efisiensi konversi energi panas laut sebesar tiga persen dapat

    menghasilkan daya sekitar 240.000 MW. Potensi energi panas lautyang baik terletak pada daerah antara 6- 9lintang selatan dan 104-

    109bujur timur. Di daerah tersebut pada jarak kurang dari 20 km

    dari pantai didapatkan suhu rata-rata permukaan laut di atas 28C

    dan didapatkan perbedaan suhu permukaan dan kedalaman laut

    (1.000 m) sebesar 22,8C. Sedangkan perbedaan suhu rata-rata

    tahunan permukaan dan kedalaman lautan (650 m) lebih tinggi dari

    20C. Konversi energi panas laut dapat dijadikan alternatif

    pemenuhan kebutuhan energi listrik di Indonesia.

  • 5/25/2018 Ocean Thermal Energy Conversion (OTEC)

    28/28

    Resources http://www.otecnews.org/

    http://www.hawaii.gov/dbedt/ert/otec/index.html

    http://www.ocees.com/mainpages/qanda.html#faq3 Pierre Cannon Sumon Nandy Amy Nandy

    PRABUDDHA BANSAL ARAVIND G NAVANEETHA KRISHNAN N SHASHANK NARAYAN Finney, Karen Anne.2008.. Guelph Engineering Journal, Ocean Thermal Energy Conversion

    (1), 17 - 23. ISSN: 1916-1107. Kadir, Abdul. 2005. Teknologi Konversi Energi Panas Laut:Prinsip, Perkembangan dan

    Prospek. L.A.Vega,Ph.D. Marine Technology Society Journal, Ocean Thermal Energy Conversion

    PrimerV. 6, No. 4 Winter 2002/2003 pp. 25-35

    Mamahit, E.J.Calvin. Pengembangan Konversi Energi Panas Laut. Takahashi and Masutani.2001. Ocean Thermal Energy Conversion OTEC. University of

    Hawaii at Manoa, Honolulu, HI, USA.

    http://www.otecnews.org/http://www.ocees.com/mainpages/qanda.htmlhttp://www.ocees.com/mainpages/qanda.htmlhttp://www.ocees.com/mainpages/qanda.htmlhttp://www.otecnews.org/http://www.otecnews.org/