Top Banner
1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications Research, La Jolla) Chris Freiling (California State University, San Bernardino) Ken Zeger (University of California, San Diego)
24

Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

Feb 26, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

1

Network Routing Capacity

Jillian Cannons(Universityof California,SanDiego)

Randy Dougherty(Centerfor CommunicationsResearch,La Jolla)

Chris Freiling(CaliforniaStateUniversity, SanBernardino)

KenZeger(Universityof California,SanDiego)

Page 2: Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

2

�Detailed resultsfound in:

� R. Dougherty, C. Freiling,andK. Zeger

“Linearity andSolvability in MulticastNetworks”

IEEE Transactions on Information Theory

vol. 50, no. 10, pp.2243-2256,October2004.

� R. Dougherty, C. Freiling,andK. Zeger

“Insufficiency of LinearCodingin Network InformationFlow”

IEEE Transactions on Information Theory

(submittedFebruary27,2004,revisedJanuary6, 2005).

� J.Cannons,R. Dougherty, C. Freiling,andK. Zeger

“Network RoutingCapacity”

IEEE/ACM Transactions on Networking

(submittedOctober16,2004).

Manuscriptson-lineat: code.ucsd.edu/zeger

Page 3: Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

3

�Definitions

� An alphabet is a finite set.

� A network is afinite d.a.g.with sourcemessagesfrom a fixedalphabetand

messagedemandsatsinknodes.

� A network is degenerate if somesourcemessagecannotreachsomesink

demandingit.

Page 4: Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

4

Definitions - scalar coding

� Eachedgein a network carriesanalphabetsymbol.

� An edge function mapsin-edgesymbolsto anout-edgesymbol.

� A decoding function mapsin-edgesymbolsata sink to a message.

� A solution for a givenalphabetis anassignmentof edgefunctionsanddecoding

functionssuchthatall sinkdemandsaresatisfied.

� A network is solvable if it hasa solutionfor somealphabet.

� A solutionis a routing solution if theoutputof every edgefunctionequalsa

particularoneof its inputs.

� A solutionis a linear solution if theoutputof every edgefunctionis a linear

combinationof its inputs(typically, finite-field alphabetsareassumed).

Page 5: Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

5

Definitions - vector coding

� Eachedgein a network carriesa vectorof alphabetsymbols.

� An edge function mapsin-edgevectorsto anout-edgevector.

� A decoding function mapsin-edgevectorsata sink to amessage.

� A network is vector solvable if it hasasolutionfor somealphabetandsomevector

dimension.

� A solutionis a vector routing solution if every edgefunction’s outputcomponents

arecopiedfrom (fixed)input components.

� A vector linear solution hasedgefunctionswhich arelinearcombinationsof

vectorscarriedon in-edgesto a node,wherethecoefficientsarematrices.

� A vectorroutingsolutionis reducible if it hasat leastonecomponentof an edge

functionwhich,whenremoved,still yieldsa vectorroutingsolution.

Page 6: Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

6

Definitions - � � ��� � fractional coding

� Messagesarevectorsof dimension� .

Eachedgein a network carriesa vectorof atmost � alphabetsymbols.

� A � � � fractional linear solution hasedgefunctionswhich arelinear

combinationsof vectorscarriedon in-edgesto anode,wherethecoefficientsare

rectangularmatrices.

� A � � � fractionalsolutionis a fractional routing solution if every edgefunction’s

outputcomponentsarecopiedfrom (fixed)input components.

� A � � � fractionalroutingsolutionis minimal if it is not reducibleandif no

� � ��� fractionalroutingsolutionexistsfor any � � � .

Page 7: Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

7

Definitions - capacity

� Theratio � � � in a � � � fractionalroutingsolutionis calledan

achievable routing rate of thenetwork.

� Therouting capacity of a network is thequantity

� � �� � � all achievableroutingrates��

� Notethatif a network hasa routingsolution,thentheroutingcapacityof the

network is at least .

Page 8: Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

8

Someprior work

� Somesolvablenetworksdo not have routingsolutions(AhCaLiYe2000).

� Every solvablemulticastnetwork hasa scalarlinearsolutionover somesufficiently large

finite field alphabet(LiYeCa2003).

� If anetwork hasavectorroutingsolution,thenit doesnotnecessarilyhave ascalarlinear

solution(MeEfHoKa2003).

� For multicastnetworks,solvability over a particularalphabetdoesnot imply scalarlinear

solvability over thesamealphabet(RaLe,MeEfHoKa,Ri 2003,DoFrZe2004).

� For non-multicastnetworks,solvability doesnot imply vectorlinearsolvability

(DoFrZe2004).

� For somenetworks,thesizeof thealphabetneededfor a solutioncanbesignificantly

reducedusingfractionalcoding(RaLe2004).

Page 9: Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

9

�Our results

� Routingcapacitydefinition.

� Routingcapacityof examplenetworks.

� Routingcapacityis alwaysachievable.

� Routingcapacityis alwaysrational.

� Every positive rationalnumberis theroutingcapacityof somesolvablenetwork.

� An algorithmfor determiningtheroutingcapacity.

Page 10: Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

10

�Somefacts

� Solvablenetworksmayor maynot have routingsolutions.

� Every non-degeneratenetwork hasa � � � fractionalroutingsolutionfor some�and � (e.g.take � � and � equalto thenumberof messagesin thenetwork).

Page 11: Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

11

Example of routing capacity

1

4

5

2 3

6 7

x, y

x, y x, y

This network has a linear coding solution but no

routingsolution.

Each of the � � messagecomponents must be

carried on at least two of the edges � � ��� � � ��� , � � �� .

Hence,� � � � � � , andso � � � � .

Now, we will exhibit a � � � fractional routing

solution...

Page 12: Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

12

Exampleof routing capacity continued...

y3

y2x3

x2

x3

x2 y3

y2

x1x2x3y

1

y1

y2y3x1

x1x2x3y

1

y1

y2y3x1

1

4

5

2 3

6 7

x, y

x, y x, y

Let � � � and � � � .

This is a fractionalroutingsolution.

Thus, � � � is anachievableroutingrate,so � � � � � .

Therefore,theroutingcapacityis � � � � � .

Page 13: Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

13

Example of routing capacity

21

3

4

65x, yx, y x, yx, y

x y

Theonly way to get � to � � is � � � � � � � � � � � .

Theonly way to get � to � is � � � � � � � � � � .

� � � � musthave enoughcapacityfor bothmessages.

Hence,� � � , so � � � .

Page 14: Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

14

Exampleof routing capacity continued...

21

3

4

65x, yx, y x, yx, y

x y

xyx

x y

y

y x

Let � � and � � � .

This is a fractionalroutingsolution.

Thus, � � is anachievableroutingrate,so � � � � .

Therefore,theroutingcapacityis � � � � .

Page 15: Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

15

Example of routing capacity

21

3 54

96 7 8

, ba

, db, cb, da, ca

, dc

This network is dueto R. Koetter.

Eachsourcemustemit at least � � componentsandthe

total capacityof eachsource’s two out-edgesis � � .

Thus, � � � � , yielding � .

Page 16: Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

16

Exampleof routing capacity continued...

21

3 54

96 7 8b1b2c1c2

b2b1 c2

a2

a1

b1b2

c1c2d1d2

d1d2

c1a2a1

d2a2

d2

b1

b1

c1

c1a2

a1a2d1d2

b1b2d1d2

a1a2c1c2

Let � � � and � � � .

This is a fractionalroutingsolution

(asgivenin MeEfHoKa,2003).

Thus, � � � is anachievableroutingrate,so � � .

Therefore,theroutingcapacityis � � .

Page 17: Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

17

Example of routing capacity

(1),x x m( )... ,

N+2(1),x x m( )... ,

N+1N32

1

(1),x x m( )

II

...

...

...

...

... ,IN

+1+N

Eachnodein the3rd layerreceivesauniquesetof � edgesfrom the2ndlayer.

Every subsetof � nodesin layer2 mustreceive all � � messagecomponentsfrom the

source.Thus,eachof the � � messagecomponentsmustappearat least � � � � � timeson the � out-edgesof thesource.Sincethetotal numberof symbolson the �

sourceout-edgesis � � , we musthave � � � � � � � � � � or equivalently

� � � � � � � � � � � � . Hence, � � � � � � � � � � .

Page 18: Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

18

Exampleof routing capacity continued...

(1),x x m( )... ,

N+2(1),x x m( )... ,

N+1N32

1

(1),x x m( )

II

...

...

...

...

... ,IN

+1+N

Let � � � and � � � � � � � � Thereis a fractionalroutingsolutionwith theseparameters(theproof is somewhatinvolvedandwill beskippedhere).

Therefore,� � � � � � � � � is anachievableroutingrate,so

� � � � � � � � � � � .

Therefore,theroutingcapacityis � � � � � � � � � � � .

Page 19: Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

19

(1),x x m( )... ,

N+2(1),x x m( )... ,

N+1N32

1

(1),x x m( )

II

...

...

...

...

... ,IN

+1+N

Somespecialcasesof thenetwork:

� � � � ��� � �� , � (AhRi 2004)

No binaryscalarlinearsolutionexist. It hasa non-linearbinaryscalarsolutionusinga � � � �� � � �Nordstrom-Robinsonerrorcorrectingcode.We computethattheroutingcapacityis � � � � � � .

� � � � ��� � � , � � (RaLe2003)

Thenetwork is solvable,if thealphabetsizeis at leastequalto thesquareroot of thenumberof sinks.

We computethattheroutingcapacityis � � � �� � ��� � � � .

� � � � ,� � � �Illustratesthatthenetwork’s routingcapacitycanbegreaterthan1. We obtain � � � � .

Page 20: Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

20

21

3

4

65x, yx, y x, yx, y

x y For eachmessage� , a directedsubgraphof � is an

� -tree if it has exactly one directedpath from the

sourceemitting � to each destinationnode which

demands� , and the subgraphis minimal with re-

spectto thisproperty(similar to directedSteinertrees).

Let � � � � � � � beall such � -treesof a network.

e.g.,thisnetwork hastwo � -treesandtwo � -trees:

3

4

65x, yx, y x, yx, y

1

x

3

4

65x, yx, y x, yx, y

1

x

3

4

65x, yx, y x, yx, y

2

y

3

4

65x, yx, y x, yx, y

2

y

Page 21: Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

21

Definethefollowing index sets:

� � � � ��� � � � is an � -tree�� � � � ��� � � � containsedge� ��

Denotethetotal numberof trees� � by � .For agivennetwork, wecall thefollowing 4conditionsthenetwork inequalities:

� �� � � � � ��� � � �

� �� �� � � � �� � ��

� �

� � �where � � � � � � arerealvariables.If asolution � � � � � � � to thenetwork

inequalitieshasall rationalcomponents,thenit is saidto bea rational solution.

( � � representsthenumberof messagecomponentscarriedby � � .)

Page 22: Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

22

Lemma: If a non-degeneratenetwork hasaminimal fractionalroutingsolutionwith

achievableroutingrate � � � , thenthenetwork inequalitieshave arationalsolution

with � � � � .

Lemma: If thenetwork inequalitiescorrespondingto a non-degeneratenetwork have a

rationalsolutionwith � � � , thenthereexistsa fractionalroutingsolutionwith

achievableroutingrate � � .

By formulatinga linearprogrammingproblem,we obtain:

Theorem: Theroutingcapacityof every non-degeneratenetwork is achievable.

Theorem: Theroutingcapacityof every network is rational.

Theorem: Thereexistsanalgorithmfor determiningthenetwork routingcapacity.

Theorem: For eachrational � � � thereexistsasolvablenetwork whoserouting

capacityis � .

Page 23: Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

23

Network Coding Capacity

� Thecoding capacity is

� � � � � � � � � �� � � � fractionalcodingsolution� �

� routingcapacity linearcodingcapacity codingcapacity

� Routingcapacityis independentof alphabetsize.

Linearcodingcapacityis not independentof alphabetsize.

� Theorem: Thecodingcapacityof a network is independentof thealphabetused.

Page 24: Network Routing Capacitycode.ucsd.edu/~jcannons/05CaDoFrZe-DIMACS.pdf1 Network Routing Capacity Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications

24

TheEnd.