Top Banner
NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division
33

NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

Mar 27, 2015

Download

Documents

Charles Jackson
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

NASA and NOAA space missions for Ozone Research

Ken Jucks

NASA HQ, Earth Science Division

Page 2: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

40 Years of BUV Observations

20101970 1980 1990 2000

NOAA-9 SBUV-2NOAA-11

NOAA-14

Nimbus-4 BUVNimbus-7 SBUVNimbus-7 TOMS

Meteor-3 TOMS

NOAA-16Earth Probe TOMS

EOS Aura OMISCIAMACHY

GOME-2

GOME

OMPS

1977 Amendment of Clean Air Act

Discovery of Polar O3 Depletion

Page 3: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

model

measurement

Merged Backscatter UV observations of total O3 from TOMS and SBUV flights

Page 4: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

First image of the Antarctic Ozone hole. This image was produced from the TOMS data in 1984, and was first published in NY Times in late ‘85. Subsequently, images like this appeared in magazines and newspapers all over the world.

A rare splitting of the Antarctic ozone hole captured by TOMS in 2002. The split occurred because of the splitting of the polar vortex (circumpolar winds).

Page 5: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.
Page 6: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

TOMS Firsts!• Detection of precursors of severe weather in total O3 data.

• Mapping of Antarctic O3 hole and its evolution.

• Dynamical influences on tropical trop O3.

• Surface UV estimation in all weather conditions.

• Compilation of volcanic SO2 budget.

• Identification of sources of desert dust.• Mapping of smoke plumes over land (incl. Greenland).• Estimation of aerosol absorption OD.

For TOMS, discovery was not a quest but result For TOMS, discovery was not a quest but result of quarter century of dedicated teamworkof quarter century of dedicated teamwork

Page 7: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

NASA - NOAA SBUV Cooperation

• Under a memorandum of understanding (MOU) between NASA and NOAA agreed to in ~1984– NOAA launches and operates a series of SBUV/2 instruments

for ozone monitoring– NOAA is responsible for data production and archival– NASA is responsible for prelaunch and in orbit calibration– NASA supports development of new ozone retrieval algorithms

• NPOESS OMPS will be the next generation ozone monitoring instrument. OMPS consists of 3 modules:– The OMPS nadir total column mapper is a TOMS-like ozone

mapping instrument– The OMPS nadir profiler is an SBUV-like vertical profile

instrument– The OMPS limb profiler makes high vertical resolution ozone

profile measurements (currently on NPP only)

Page 8: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

Ozone Mapping Profiler Suite (OMPS)

Description• Purpose: Monitors the total column and vertical profile of ozone

• Predecessor Instruments:TOMS, SBUV, GOME, OSIRIS, SCIAMACHY

• Approach: Nadir push broom CCD spectrometers• Swath width: 2600 km

• Algorithm Status: Use TOMS/SBUV heritage approaches for Nadir Instruments

Status

• Flight Unit #1 Calibration underway

• Limb Sub-System Re-manifested

• Instrument 50/50 cost share NOAA and NASA

NASA to develop algorithm

NOAA to support operational users

Page 9: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

OMPS Team•At this point, over 300 people have contributed to the progress of the OMPS mission and, thus, to this presentation. Instead of giving an incomplete list of them, I decided to provide an incomplete list of their organizations:• Ball Aerospace and Technology Corporation • (and its subcontractors)• The Integrated Program Office (NOAA)• Northrop Grumman Corporation• Raytheon Company• NASA, DoD, DOC• The Aerospace Corporation• Atmospheric and Environmental Research Incorporated• Science Systems and Applications Incorporated• The University of Arizona• Hampton University

Page 10: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

OMPS Instrument Design

Total Ozone Mapper • UV Backscatter, grating spectrometer, 2-D

CCD• TOMS, SBUV(/2), GOME(-2), OMI,

SCIAMACHY• 110 deg. cross track, 300 to 380 nm spectralLimb Profiler • UV/Visible Limb Scatter, prism, 2-D CCD array• SOLSE/LORE, OSIRIS, SAGE III,

SCIAMACHY• Three 100-KM vertical slits, 290 to 1000 nm

spectralNadir Profiler • UV Backscatter, grating spectrometer, 2-D

CCD• SBUV(/2), GOME(-2), SCIAMACHY, OMI• Nadir view, 250 km cross track, 270 to 310 nm

spectral

• The calibration concept uses working and reference solar diffusers.

Page 11: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

OMPS Sensor characteristics compared to heritage

       

       

•Improved ozone profile, temperature and climatologies.•Improved ozone profile correction •Use of surface UV reflectivity database. •Use of co-located UV Cloud pressure determination using OMI data

   

•Multiple Triplets•Cloud top pressure•Others (see presentation). 

Algorithm improvements

QVD and Aluminum   Aluminum Aluminum Multiple Diffusers

 110 degrees  Scanning = 53 degrees 110 degrees IFOV

 CCD  PMT CCD Detectors

 6 Channels and DOAS  6 wavelengths 22 channels Channel selection

 1nm - .45nm THIS DOESN’T Look right.  Discrete bands .41nm Spectral resolution

307nm to 383nm  

 308.6, 313.5,317.5, 322.3331.2, 360.4 nm 300nm to 380 nm Bands Range

       

OMI TOMS OMPS  

OMPS sensor and algorithm design include improvements to enhance performance (green indicates design improvement)

Page 12: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

OMPS Total ColumnRequirements Specification

EDR/Attribute Appendix D EDR requirements

Horizontal cell size 50 Km @ Nadir

Horizontal Reporting Interval 50 Km @ Nadir

Vertical Cell Size 60 Km

Solar Zenith Angle (SZA) coverage SZA < 80 deg

Vertical Coverage 0 to 60 Km

Measurement Range 50 - 650 milli-atm-cm

Measurement Accuracy  

TC > 450 milli-atm-cm 16 milli-atm-cm

250 milli-atm-cm<TC< 450 milli-atm-cm 13 milli-atm-cm

TC < 250 milli-atm-cm 9.5 milli-atm-cm

Measurement Precision  

TC > 450 milli-atm-cm7.75 milli-atm-cm + 1.1% of Measured Ozone

over 450milli-atm-cm

250 milli-atm-cm<TC< 450 milli-atm-cm 7.7 milli-atm-cm

TC < 250 milli-atm-cm 6.0 milli-atm-cm

Mapping uncertainty, 1 Sigma 5 Km

Maximum Local Average Revisit Time 24 hrs

Latency NPP - 140 min

NPOESS - 28 min

Measurement Degradation Conditions (OMPS degradation)  

Total Column Accuracy if Sulfur Dioxide Index > 6 milli-atm-cm 15 milli-atm-cm + 3SOI

Total Column Precision if Sulfur Dioxide Index > 6 milli-atm-cm 6 milli-atm-c, + 1.5SOI

Page 13: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

OMPS Limb Algorithm Status• Limb Profile Algorithm Technical

Content– Ozone Limb Profiles (LP) are

successfully retrieved from four systems today (GOMOS, SCIAMACHY,OSIRIS & SAGE III)

– NASA has developed an Ozone LP algorithm, and data from these systems are processed for ozone research

• Operational Production– POES SBUV/2 provides a model

for NASA/NOAA cooperation to process OMPS LP data.

• Instrument calibration, data cal/val, performance monitoring, algorithm adjustments, and operational processing

OMPS-NPOMPS-LP

Ozone Profile ComparisonOctober 10, 2002

Page 14: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

Multi-Instrument Ozone Profile Data

NASA Science Team analysis on existing data increase confidence that we can meet NASA OMPS Limb goals.

OSIRIS data courtesy of University of Saskatchewan

Ozo

ne C

once

ntra

tion

[cm

-3]

Limb Scatter (OSIRIS)SAGE 2MLS

Page 15: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

OMPS Limb Algorithm PlanContinue SBUV/2 model of NASA/NOAA cooperation to process OMPS LP data.

• NASA led team with NOAA members• Algorithm development and improvement• Instrument calibration, Instrument performance monitoring, & data cal/val• Adjusting algorithms for specific instrument performance issues• Develop long-term ozone profile data set: SAGE II to Aura MLS to OMPS• Develop algorithm and calibration for operational data production

Research Data Production• NASA Ozone PEATE provides facility for algorithm development, research data processing

and long-term data set production.• Additional OMPS PEATE resources for meeting OMPS Limb requirements are baselined to

launch

Operational Data Production• Use SBUV/2 Model: NASA/NOAA team produces algorithm, instrument calibration,

performance monitoring, algorithm adjustments, and operational algorithm• Current operational SBUV2 data processed by NESDIS• Future operational OMPS LP data could be produced by NPOESS Data Exploitation (NDE).

– NDE adapts operational algorithm for NDE system– All operational users supported by NOAA NDE

Page 16: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

Expected Applications of OMPS EDRs, SDRs, Intermediate and other Products

Operational• Assimilation into NWP• Ozone Hole Monitoring• UV Index Forecast• Air Quality Forecasts• Hazards (Volcanic Ash)• Space Environment (Mg II)

Climate• Ozone Trends• Cloud Reflectivity• Surface UV Trends• Aerosol Trends• Atmospheric Chem.• Process Studies

Page 17: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

EOS Aura• Launched VAFB, July 15, 2004• Orbit: Polar: 705 km, sun-synchronous, 98o incl.,

ascending 1:45 PM equator crossing time. – Aura follows Aqua in the same orbit by <7 minutes. Orbit position

moved closer to Aqua to improve science – crossing time unchanged.

• Main science objectives: stratospheric ozone recovery; air quality; climate change

• Four Instruments:– HIRDLS (High Resolution Dynamics Limb Sounder, Univ. Of

Col/NCAR./ Oxford U. K.)– MLS (Microwave Limb Sounder, JPL)– OMI (Ozone Monitoring Instrument, Netherlands/ Finland)– TES (Tropospheric Emission Spectrometer, JPL)

• Level 1 mission success requirements have been met• All instruments have delivered data to the DAAC

– Some teams are reprocessing based on validation measurements

• Senior review in 2009• Main data validation program will be complete in 2008.

Some remaining validation requirements for OMI • Spacecraft in good shape

– Dec 2007 formatter anomaly – recovered all data– Fuel sufficient for 2015 orbit lowering

Aura

Aura instrumentfields of view Aura instrumentfields of view

HIRDLSMLSOMITES

HIRDLSMLSOMITES

Page 18: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

HIRDLS• Limb sounding filter IR radiometer 6.12 - 17.76 µm range, 1 km vertical

resolution

• Joint U.S., U.K. science team.

• Instrument is currently off due to recent chopper wheel stall (March, 2008)

• Kapton® has been blocking part of the aperture since launch

• HIRDLS team has delivered data to the DAAC using new algorithm– Ozone, HNO3, aerosols, temperature

– Currently working on H2O, CFC’s, CH4, ClONO2

• HIRDLS high vertical resolution is revealing structures in the lower stratosphere not seen before…

01-26-2006~ 248° Lon

HIRDLS GMI Chemical Model

Page 19: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

MLS

• Limb sounding microwave radiometer 125 GHz-2.5 THz• Instrument has operated since shortly after launch

– Known pre-launch problems with amplifier chips has caused loss of one channel; data products recovered from other channels

– Instrument electronics slowly deteriorating due to radiation exposure

• All data products have been released to the DAAC– Data products include profiles of O3, ClO, HCl, H2O, N2O, HNO3, OH, HO2,

Cloud ice, BrO, HOCl.

O3 Sept 1, 2005 HCl Sept 1, 2005 ClO Sept 1, 2005

Vortex edge

Page 20: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

OMI

• UV-Vis hyperspectral imager, 280-500 nm, 13x24 km footprint at nadir, swath width 2600 km

• Joint US, Dutch, Finish Science Team

• Direct broadcast capability

• Radiation damage is increasing the dark current

• All data products being delivered to the DAAC, some new products under development. Ozone, Cloud heights, NO2, Aerosols, SO2 have been validated.

SO2 over Europe and China

Global NO2

Sept. 24, 2006

Page 21: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

TES• Fourier transform spectrometer with nadir and limb

modes, 3.3 - 15.4 µm , 5.3x8.5 km spatial footprint

• Translator bearing wear will limit instrument life, currently using nadir mode only to preserve instrument life. TES is predicted to fail ~2010

• Trop. O3, CO, H2O, T have been validated and are on DAAC

• New data products under development – HDO, CH3OH, NH3

Observation Number

0 5 10 15 20 25 30 35 40

Eff

ectiv

e C

olum

n M

ixin

g R

atio

, ppb

v

0

1

2

3

4

5

6

Latitude, deg

38 39 40 41 42

NH3

Observation Number

0 5 10 15 20 25 30 35 40

Effe

ctiv

e C

olum

n M

ixin

g R

atio

, ppb

v

0

1

2

3

4

5

6

Terr

ain

Hei

ght,

km

0

1

2

3

4

5

6

Latitude, deg

38 39 40 41 42

CH3OH

Bejing

Page 22: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

Aura Summary• Spacecraft is in good shape – fuel to 2015

– Recovered from formatter anomaly, commands to switch to B side available upon reoccurrence

• Instrument status– HIRDLS – chopper stalled – status TBD– MLS – working well – showing an accumulation of radiation damage in

amplifier circuits– TES – Translator bearing current rising slowly – 2009-10 expect failure– OMI – working well -accumulation of radiation damage increasing dark

current

• Have met Mission Success Criteria • Platform wide validation program nearly complete.• All the instruments have data on the DAAC- many instruments

are reprocessing data based on validation results.• NRT data available for OMI NO2, O3, Aerosols• Publications

– IEEE Special issue on Aura Instruments and Algorithms Published May 2006

– Aura Validation Special Issue in JGR is coming out now (>63 papers)– >100 other publications in the refereed literature

Page 23: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

NASA’s Earth Science Decadal Survey

• The US National Research Council recommended 15 new space missions to be done over a 10 year time frame.

• The launch order was grouped into 3 tiers based on priority, cost, and technology readiness.

• Missions evolved from chapters that discussed “societal objectives” as opposed to “science questions”, and over 120 responses to requests for information from the community.

• This resulted in the merging of missions for some traditionally separated scientific fields.

• 4 proposed missions will make measurements applicable to Ozone research and monitoring.

Page 24: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

Climate Absolute Radiance and Refractivity Observatory (CLARREO)

Page 25: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

CLARREO Characteristics

• Spectrally resolved nadir instruments in the IR and solar backscatter designed for setting “Climate Benchmarks” as opposed to being used for atmospheric sounding.

• Stability and simplicity take priority over the complexity needed to properly sound the atmosphere. Accuracy over Precision.

• Baseline instrumentation include 3 thermal FTS instrument packages with roughly 100 km footprints and 1 cm-1 spectral resolution from 200 to 2000 cm-1.– Each is on a separate polar precessing orbit to cover semi-diurnal

radiances.– To cover spectral range, 1 or 2 FTS spectrometers may be needed.

• One of the satellites will have a solar backscatter instrument.• Both IR and UV will have Ozone bands.• All instruments will have on-board NIST traceable calibration

sources to understand any instrument drift over time.• This is a Tier 1 mission

Page 26: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

GEOSTATIONARY COASTAL AND AIR POLLUTION EVENTS (GEO-CAPE)

Page 27: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

GEO-CAPE Characteristics• Geosynchronous orbit

– Will observe most of North and South America and coastal regions.

• Suite of air quality observing instrumentation– CO sensors in near infrared and mid infrared.

– Tropospheric O3 sensor in UV or potentially near IR.

– NO2, formaldehyde and aerosols retrieved in UV.

– All would have footprint sizes of roughly 5 to 8 km.

– This has strong technical overlap with Sentinel 4.

• High spatial resolution imager– Roughly 250 m resolution to observe coastal ocean biology activity and

“special events” over land.

– Enough spectral filter bands to properly separate the radiances from the ocean or land from the atmospheric opacity of aerosols and NO2.

– The knowledge of the atmospheric opacity is required to fully characterize the ocean radiances.

• This is a Tier 2 mission

Page 28: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

Aerosol-Cloud-Ecosystems (ACE)

Page 29: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

Characteristics of ACE

• Low Earth Orbit– The lower the better for the lidars…

• Scanning aerosol polarimeters (next generation GLORY)• Clouds radar imager (next generation CloudSat)• Aerosol and cloud lidar (next generation CALIPSO)• Global Ocean Color mapper

– Like GEO-CAPE, ocean color is tied to atmosphere sounders to better determine atm. effects on the ocean leaving radiances.

• No “direct” Ozone observations, but will see stratospheric aerosols.

• This is a tier 2 mission

Page 30: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

Global Atmospheric Chemistry Mission (GACM)

Page 31: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

GACM Characteristics• Low Earth Orbit

• UV nadir sounder for O3 columns and potential profiling, NO2, formaldehyde, aerosols, BrO, etc.

• Mid to near IR sounder for potential CO, tropospheric O3, CH4…

• Scanning microwave limb sounder to get daily global maps of profiles for O3, ClO, HCl, N2O, H2O, etc.

• This mission is very much a next generation Aura and has many similarities to the ESA Sentinal 5.

• This is designated as a Tier 3 mission, and the odds are high for a significant gap in profile information of global data sets.

Page 32: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

Data Gaps from space issues• Observations of Ozone related species like ClO, HCl,

H2O, N2O, CFCs in the stratosphere may end after Aura with a near certainty that GACM will not overlap (Aura did overlap with UARS).

• Space observations have many advantages over ground based and spot field campaign observations that are required for understanding the climate coupling with the stratosphere.

• A “gap filler” set of observations may be required, either by NASA or through a collaboration with a partner country.

• The Decadal Survey also calls out for 1 or 2 “Venture Class” missions in recognition of this problem in many different Earth Science disciplines.

Page 33: NASA and NOAA space missions for Ozone Research Ken Jucks NASA HQ, Earth Science Division.

CASS, Chemical, Aerosol and Solar Satellite CASS, Chemical, Aerosol and Solar Satellite • CASS would provide stratospheric and upper

tropospheric composition data in the post-Aura period until the NAS Decadal “Global Atmospheric Composition Mission (GACM)”.

• NAS Decadal Survey: “.. it is imperative that .. a follow-on tropospheric-stratospheric mission … should be launched into a LEO orbit in the middle of the next decade. (pg 109)”

• Stratospheric chlorine levels will remain above 1980 levels

until 2040 • CASS fulfills the Congressional Mandate for

NASA to monitor the state of the stratospheric ozone layer

• CASS also provides a better venue for the NPOESS TSIS solar monitoring package

– Would not require NPOESS solar pointing platform saving IPO $20M

• CASS would provide stratospheric and upper tropospheric composition data in the post-Aura period until the NAS Decadal “Global Atmospheric Composition Mission (GACM)”.

• NAS Decadal Survey: “.. it is imperative that .. a follow-on tropospheric-stratospheric mission … should be launched into a LEO orbit in the middle of the next decade. (pg 109)”

• Stratospheric chlorine levels will remain above 1980 levels

until 2040 • CASS fulfills the Congressional Mandate for

NASA to monitor the state of the stratospheric ozone layer

• CASS also provides a better venue for the NPOESS TSIS solar monitoring package

– Would not require NPOESS solar pointing platform saving IPO $20M

• CASS would be a sun-pointing satellite based upon SCISAT in mid-inclination orbit (50-650)

• CASS Payload– Canadian ACE instrument

(flown on SCISAT – provided by CSA)

– SAGE III (flown on METEOR, copy at LaRC, requires refurbishment)

– TSIS – Total solar irradiance sensor (TIM and SIM, flown on SORCE, provided by NOAA)

• CASS ROMROM cost (including spacecraft, refurbishment of SAGE III, launch and operations) ~$120M

• CASS would be a sun-pointing satellite based upon SCISAT in mid-inclination orbit (50-650)

• CASS Payload– Canadian ACE instrument

(flown on SCISAT – provided by CSA)

– SAGE III (flown on METEOR, copy at LaRC, requires refurbishment)

– TSIS – Total solar irradiance sensor (TIM and SIM, flown on SORCE, provided by NOAA)

• CASS ROMROM cost (including spacecraft, refurbishment of SAGE III, launch and operations) ~$120M

ACE SAGE III TSIS

TIM SIM

SCISAT