Top Banner
Nanophysics Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005
25

Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

Dec 29, 2015

Download

Documents

Vernon Hicks
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

NanophysicsNanophysics

Michael Hietschold

Solid Surfaces Analysis Group &

Electron Microscopy Laboratory

Institute of Physics

Portland State University, May 2005

Page 2: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

Content of the Whole Course

1st Lecture

• 1. Introduction

• 2. The Nanoscale in 2,1,0, and 3 Dimensions

• 3a. Surfaces and Interfaces – Geometrical Structure

Page 3: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

Intermediate Lecture – SPM Nanoanalysis

I. Nature of Resolution Limits – Near-Field Principle

II. Scanning Tunneling Microscopy / Spectroscopy / Manipulation

III. Scanning Force Microscopies

IV. Other Near-Field Microscopies

Page 4: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

2nd Lecture

• 3b. Surfaces and Interfaces – Electronic Structure

• 4. Semiconductor Heterostructures

3rd Lecture

•5. 2-Dimensional Electron Gas

•6. Quantum Interference, Molecular Devices, and Self-Assembling

•7. Outlook

Page 5: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

1.IntroductionHistory:

Richard Feynman 29th December 1959 (APS Meeting at Caltech):

„There is plenty of room at the bottom“

Fiction : Molecular electronics (F.L.Carter 1982)

Reality: Daily-life nanotechnology (e.g. ultrathin films,ultra-precision manufacturing, self-organizedand -assembled structures, ...)

Breakthrough: Scanning probe techniques

Nanotechnology needs Nanoscience !!!

Page 6: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

Dimensional Considerations

1 nm = 10-9 m = 0.001 µm

Fe (bcc): d = 0.25 nm

A few nearest-neighbor distances in solids

1/1000 extension of a malaria bacterium

1 nm

Page 7: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

A / V = 6a2 / a3 = 6 / a = 6 V-1/3

V = a3 (2a)3 = 8 a3 (5a)3 = 125 a3 (10a)3 = 1000 a3

Percentage of „surface atoms“:

100% 100% 78,4% 48,8%

Macroscopic: V = (108a)3 = 1024 a3 A = 6 (108a)2 = 6 1016 a2

Percentage of surface atoms: 6 10-8 % !!! (negligible)

Role of surface effects increases with decreasing dimensions

Page 8: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

Behavior of extensive physical quantities

Classical macroscopic physics (thermodynamics):

E = ε V = e N

Geometry-dependent mesoscopic quantities:

Sphere:

E = ε V + εSurface(R) A = e N + eSurface(R) N2/3

 Cube:

E = ε V + εSurface A + εEdge L + εCorner 8

≈ e N + eSurface N2/3 + eedge N

1/3 + eCorner N0

 

εSurface = εSurface (∞)

Page 9: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

Application of Basic Physical Theories –

Classical vs. Quantum Physics:

 mesoscopic phenomena (quasiclassical regime) 

Classical MechanicsElectrodynamicsThermodynamics

Quantum MechnicsQuantum Electrodynamics

Quantum Statistics

Page 10: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

Bottom-up and top-down

approaches

• Top-down:

classical approach of miniaturization (scaling down from the macroscopic world)

• Bottom-up:

„chemical/syntheti-cal approach“ (scaling-up from the atomic entities)

Page 11: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

2. The Nanoscale 1, 2, 3 Dimensions

Number of Nano-Dimensions:

1 – Nanofilms

2 – Nanowires

3 - Nanodots

One can start by creating Nanofilms on a substrate and proceed to Nanowires and Nanodots by lateral lithography

Page 12: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

Other Nanoobjects

Nanocomposites

Nanoporous Systems

High-velocity deformed nanostrucutred Nihttp://www.nanodynamics.com/ndMaterials.asp

Nanoporous luminescent Sihttp://www.chem.ucsb.edu/~buratto_group/PorousSilicon_1.htm

Page 13: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

Supramolecular Architectures

J.-M.Lehnhttp://www.iupac.org/publications/pac/1994/pdf/6610x1961.pdf

C.J.Kuehlhttp://www.iupac.org/news/prize/2002/Kuehl-essay.pdf

3-dimensional functional structures according to the molecular geometri-cal and electronic structures

Page 14: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

3. Surfaces and Interfaces 3.1. Macroscopic Description

Surface Energy:

Classical cleavage

Relaxation

„frozen“ surface relaxestowards equilibrium

E = ε0 V < 2 [ ε0 (½ V) + εSurface A ] 

εSurface > 0

Page 15: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

Wulff‘s Construction

Surface tension γ:

γ = ∂ F / ∂ A  ∫ γ(n) dA Min.(whole surface)

γ-plot: inner enveloppe of γ(n) determines crystalshape in equilibrium

Page 16: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

Phase Boundaries

Interfacial tensions

Young‘s equation: γS = γS/F + γF cos Ф

determines modes of thin film growth: Frank - van der Merwe (complete wetting) Vollmer-Weber (islands)

Page 17: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

Frank-van der Merwe Stranski-Krastanov Vollmer-Weber

Ф = 0; γS > γS/F + γF Ф > 0; γS < γS/F + γF

Atomic interactions:

Sub-Ads > Ads-Ads Ads-Ads > Sub-Ads

only valid in equilibrium supersaturation changes conditions

Page 18: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

3.2. Structure and Crystallography

of Surfaces

TLK model

(terraces, ledges,kinks)

Burton, Frank,Cabrera 1935

Page 19: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

Fundamental Surface Lattices

5 Bravais lattices in 2 dimensions belonging to 10 point groups

in 3 dimensions: 14 Bravais lattices, 32 point groups

Page 20: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

Miller Indices

Sections cutted from the axis

Take inverse of them

Multipy to get the smallest Integers

Axes parallel to surface – index 0

(1-10) (211)

x

y

z

Page 21: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

• Surface Relaxation

varying distances between lattice planes

(metals)

• Surface Recon-struction

Change of (lateral) atomic arrangement on the surface

(semiconductors)

z

Page 22: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

Adsorbate Structuresz

Page 23: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

Description of superstructures:

R = m a1 + n a2

 Adsorbate / Rec. Surface Lattice: b1 = m11 a1 + m12 a2

b = M ab2 = m21 a1 + m22 a2

 Area of new unit cell:  |b1 x b2| = det M |a1 x a2|

 integer simple

det M rational coincidence superlatticeirrational incommensurate

Page 24: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

Exemples:

Real space diffraction image

Page 25: Nanophysics Michael Hietschold Solid Surfaces Analysis Group & Electron Microscopy Laboratory Institute of Physics Portland State University, May 2005.

Structure of interfaces

crystallinity and sharpnesscharacterize solid-solid interfaces

z