Top Banner
M0nitoring and Analysis of a Novel Highway Runoff Treatment System for Application in Salt Vulnerable Areas By: Bill Trenouth, M.Sc., EIT 1 And B. Gharabaghi, Ph.D., P.Eng. Doctoral Candidate, Water Resources Engineering, University of Guelph M.A.Sc., Water Resource Engineering, University of Guelph (2011) TSWCS Conference July 28 th , 2014
35

Monitoring and analysis of a novel highway runoff

Dec 07, 2014

Download

Environment

69th SWCS International Annual Conference
“Making Waves in Conservation: Our Life on Land and Its Impact on Water”
July 27-30, 2014
Lombard, IL
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Monitoring and analysis of a novel highway runoff

M0nitoring and Analysis of a Novel Highway Runoff Treatment System for Application in 

Salt Vulnerable Areas

By: Bill Trenouth, M.Sc., EIT 

1

And B. Gharabaghi, Ph.D., P.Eng.

Doctoral Candidate, Water Resources Engineering, University of GuelphM.A.Sc., Water Resource Engineering,  University of Guelph (2011)

TSWCS ConferenceJuly 28th, 2014

Page 2: Monitoring and analysis of a novel highway runoff

Outline

Background Objectives Laboratory Testing Site Description Field Facility Preliminary Results Next Steps Acknowledgements

2

Page 3: Monitoring and analysis of a novel highway runoff

Some Context In May 2000, the contamination of a municipal water supply in Walkerton, Ontario led to an E.coli outbreak in which approximately 5,000 became ill and 7 people died

Page 4: Monitoring and analysis of a novel highway runoff

The Outcome The tragedy led to a Provincial Enquiry into the issue, and a number of recommendations were made. The Government of Ontario promised to not only protect municipal drinking water sources, but also to make Ontario’s drinking water the safest in the world

Page 5: Monitoring and analysis of a novel highway runoff

Highway Threat Assessment Between rain or melt events, pollutants tend to accumulate on road surfaces, including: Sediment Chromium Cadmium Copper Zinc Nickel Chlorides

5

Page 6: Monitoring and analysis of a novel highway runoff

Concentrations of these pollutants are a function of: Average annual daily traffic (AADT) Duration between wash off events (ADD)

6

Quality of the vehicles on the road

Joo‐Hyon Kang et al., 2006

Page 7: Monitoring and analysis of a novel highway runoff

7

5M tonnes of road salt applied annually in Canada (EC, 2007) 1.1M tonnes in Ontario alone (1998) Number is roughly double that in the U.S.

Private contractors tend to apply salt at a density that is 4X greater than public agencies Application excess is in response to liability issues Total contributionremains unquantified

Page 8: Monitoring and analysis of a novel highway runoff

8

4.3 x

Page 9: Monitoring and analysis of a novel highway runoff

Guidelines

9

The US EPA has set chronic and acute toxicity thresholds for chlorides which are 230 mg/L and 860 mg/L respectively (EPA, 1988)

More recently, the CCME (2011) has introduced  its own guidelines for chlorides in surface waters: 

Long-Term (Chronic) Exposure

Short-Term (Acute) Exposure

120 mg Cl-/L 640 mg Cl-/L

Page 10: Monitoring and analysis of a novel highway runoff

Regulations

10

Aesthetic chloride ion concentration (taste)  objectives for Ontario drinking water are 250 mg/L Cl‐ Exceedances of this have already been detected in 

urban wellfields in the Waterloo area (Bester et al., 2006)

Page 11: Monitoring and analysis of a novel highway runoff

Implications Chemically‐induced meromixis Death of aquatic organisms Groundwater concentrations of Cl‐ in excess of 1,600mg/L  found in Pickering Greatly exceeds Ontario drinking water guidelines Exceeds 96h LC50 for some amphibians

11

Page 12: Monitoring and analysis of a novel highway runoff

Kilgour and Associates, 200912

Page 13: Monitoring and analysis of a novel highway runoff

Implications

13

Our research group has collected streamside chloride ion concentrations in excess of 5,700 mg/L in urban areas

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

12/2

/201

0

12/2

2/20

10

1/11

/201

1

1/31

/201

1

2/20

/201

1

3/12

/201

1

Cl- C

once

ntra

tion

(mg/

L)

Chloride Ion Concentration (Gordon Rd; Winter 2010-2011)

Gordon Rd

Objective

Page 14: Monitoring and analysis of a novel highway runoff

14

Room for Improvement?

Page 15: Monitoring and analysis of a novel highway runoff

Objectives

15

Using bench‐scale tests, assess the adsorption capability of several media at removing common highway pollutants 

Using continuous monitoring techniques, assess the performance of the installed field system at capturing, detaining and attenuating the movement of multiple pollutants 

Assess the imperviousness and longevity of several liners under normal field conditions, and quantify their effectiveness at protecting groundwater

Page 16: Monitoring and analysis of a novel highway runoff

Screening & Laboratory Testing

Based on a review of the literature, multiple candidate materials were tested:

16

Page 17: Monitoring and analysis of a novel highway runoff

Column and Shaker Tests

Laboratory shaker tests to screen candidate material Column and drip testing for successful materials

17

Page 18: Monitoring and analysis of a novel highway runoff

Column Construction

Design based on research objectives and details available in the literature (e.g. Safadoust et al., 2011; Starrett et al., 1996)

18

Page 19: Monitoring and analysis of a novel highway runoff

Sensor Calibration

19

(S1) y = 596.93xR² = 0.999

(S2) y = 607.13xR² = 0.999

(S3) y = 599.1xR² = 0.999

0

5,000

10,000

15,000

20,000

25,000

0 5 10 15 20 25 30 35

NaC

l Con

cent

ratio

n (m

g/L)

Specific Conductivity (mS/cm)

Conductivity Sensor Calibration

S1

S2

S3

Linear (S1)

Linear (S2)

Linear (S3)

Page 20: Monitoring and analysis of a novel highway runoff
Page 21: Monitoring and analysis of a novel highway runoff

Valve Calibration

21

y = 1.3581x0.51

R² = 0.991

y = 0.6902x0.46

R² = 0.998

y = 0.2073x0.45

R² = 0.997

0.00

0.50

1.00

1.50

2.00

2.50

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25

Flow

(L/s

)

Head Pressure (m)

Ball Valve Rating Curves: Various Apertures (Multi-Stage)

132 Degress

145 Degrees

157 Degrees

Page 22: Monitoring and analysis of a novel highway runoff

Preliminary Results

Page 23: Monitoring and analysis of a novel highway runoff

Preliminary Results – Objective 1 The heavy metals removal results were 

satisfactory for a number of the evaluated materials:

23

0%

20%

40%

60%

80%

100%

BOF SLAG 30G IRON STOCKPILE 30G RED SAND 30G GOETHITE SOIL 30G

Rem

oval

Eff

icie

ncy

Sample

Heavy Metals Removal Results

Chromium (Cr)-Total Cobalt (Co)-Total Copper (Cu)-Total Lead (Pb)-Total Nickel (Ni)-Total Zinc (Zn)-Total

Page 24: Monitoring and analysis of a novel highway runoff

Preliminary Results – Objective 1

For chlorides:

24-5

0

5

10

15

20

25

30

35

5,000 4,000 3,000 2,000 1,000Perc

ent R

educ

tion

(%)

Salt Concentration (mg/L)

Comparison of Conductivity Reduction for Six Materials (48 Hour Test)

Comparison of Conductivity Reduction for Five Materials (48 Hour Test)

Page 25: Monitoring and analysis of a novel highway runoff

25

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

1 2 3 4 5 6 7 8 9 10

Chl

orid

e Io

n C

onc.

(m

g/L

)

Bottle #

Chloride Removal for Amendment 5

Initial Chloride Ion Conc.

Final Chloride Conc. (Pre-Filter)

Final Chloride Conc. (Post-Filter

Preliminary Results – Objective 1

Page 26: Monitoring and analysis of a novel highway runoff

Field Facility – Objective 2 Upscaling from the Laboratory to the Field  Peak dampening from diffusion, storage & adsorption Testing of Various Liners Sub‐surface Leak Detection

26

Page 27: Monitoring and analysis of a novel highway runoff

27

Page 28: Monitoring and analysis of a novel highway runoff

28

Page 29: Monitoring and analysis of a novel highway runoff

www.guelphmtowaterquality.com

Page 30: Monitoring and analysis of a novel highway runoff

Melt Water Capture and Treatment

Storm Event Winter Event Precipitation Depth (mm)

Total Event Precipitation Volume (L)

Total Event Runoff Volume Intercepted by the

Liner System (L)Start Date End Date

31/Oct/13 3/Nov/13 11.4 27,360 34,3646/Nov/13 7/Nov/13 13.8 33,120 8,14320/Dec/14 22/Dec/14 45.3 108,720 15,60711/Jan/14 15/Jan/14 19.5 46,800 49,22331/Jan/14 31/Jan/14 0.0 - 9042/Feb/14 3/Feb/14 15.3 36,720 3,246

20/Feb/14 24/Feb/14 17.4 41,760 28,3787/Mar/14 15/Mar/14 6.6 15,840 88,659

18/Mar/14 22/Mar/14 1.6 3,840 27,99628/Mar/14 29/Mar/14 4.5 10,800 7,760

TOTAL 135.4 324,960 264,280

Compacted Clay allows for upwelling from seasonal water table

Page 31: Monitoring and analysis of a novel highway runoff

Water Quantity

0

0.4

0.8

1.2

1.6

2

1/10/2014 12:00 1/12/2014 0:00 1/13/2014 12:00 1/15/2014 0:00

Flow

(lps

)

Date and Time

Melt Model

Cumulative Underdrains

Page 32: Monitoring and analysis of a novel highway runoff

Water Quality – Objective 3

Page 33: Monitoring and analysis of a novel highway runoff

Next Steps

Initial results are promising, but further testing is required.  This includes the data collected on heavy metals at the field site More information is needed about the elasticity of the system, as well as the adsorption/desorption parameters

33

Page 34: Monitoring and analysis of a novel highway runoff

Acknowledgements

We would like to thank the following partners for their support:

Ontario Ministry of Transportation Filtrexx Canada

34

Page 35: Monitoring and analysis of a novel highway runoff

Thank youBill Trenouth, Ph.D. Candidate, EITSchool of Engineering,University of [email protected]

35