Top Banner
Statistics Moments Shiu-Sheng Chen Department of Economics National Taiwan University Fall 2019 Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 1 / 57
57

Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Jun 19, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

StatisticsMoments

Shiu-Sheng Chen

Department of EconomicsNational Taiwan University

Fall 2019

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 1 / 57

Page 2: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moments

Section 1

Moments

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 2 / 57

Page 3: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moments

Moments

Moments can help us to summarize the distribution of a randomvariable.

Analogy to: the height, weight, hair color...etc. of a personEssential but Concise

Two important moments:ExpectationVariance

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 3 / 57

Page 4: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moments

Expectation

Definition (Expectation)Let S = supp(X). The expectation of a random variable X is definedas

E(X) =⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑x∈S x f (x) discrete

∫x∈S x f (x)dx continuous

Expected value; Mean (value)A probability-weighted sum of the possible values.

Expectation is a constant.Conventional notation: E(X) = µ

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 4 / 57

Page 5: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moments

Example: Fair Price for a Stock

An investor is considering whether or not to invest in a stock forone year.Let Y represent the amount by which the price changes over theyear with the following distribution

y −2 0 1 4

f (y) 0.1 0.4 0.3 0.2

Then the expected earning is

E(Y) = 0.9

That is, “on average, the investor expects to earn 0.9.” ⇐ Whatdoes this mean?

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 5 / 57

Page 6: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moments

Simulation Results and Interpretation

If you invest in this stock N years. Let Yi denote the price changefor year i, and the average earning is thus ∑

Ni=1 YiN

We can see that ∑Ni=1 YiN is very close to E(Y) = 0.9 when N is

large.

N

Ave

rage

Ear

ning

0 200 400 600 800 1000

−0.

50.

00.

51.

01.

5

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 6 / 57

Page 7: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moments

Expectation

Theorem (The Rule of Lazy Statistician)Let X be a random variable, and let g(⋅) be a real-value function.Then

E(g(X)) =⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑x g(x) f (x)

∫x g(x) f (x)dx

Example:

X =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2 with P(X = 2) = 1/31 with P(X = 1) = 1/3−1 with P(X = −1) = 1/3

Consider g(X) = X2, find E(g(X)) = ?Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 7 / 57

Page 8: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moments

Variance and Standard Deviation

Definition (Variance/SD)The variance of a discrete random variable X is defined by

Var(X) = E [(X − E(X))2] =⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑x(x − E(X))2 f (x)

∫x(x − E(X))2 f (x)dx

It describes how far values lie from the mean.Conventional notation: Var(X) = σ 2

The standard deviation is SD(X) =√Var(X), and denoted by

SD(X) = σ .

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 8 / 57

Page 9: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moments

Constant as a Random Variable

Given a constant c, then

E(c) = c,

andVar(c) = 0.

Therefore,E(E(X)) = E(X)

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 9 / 57

Page 10: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moments

Some Important Properties

Given constants a and b:

E(aX + b) = aE(X) + b

Var(aX + b) = a2Var(X)

It can shown thatE(X − E(X)) = 0

Var(X) = E(X2) − [E(X)]2

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 10 / 57

Page 11: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moments

Example: Fair Price for a Stock

DefinitionThe fair price of a stock is defined by a price such that the expectedreturn equals the risk free rate.

Suppose that the stock price is p.The return is

(p + Y) − pp

=Yp

As an alternative, the investor can put the money in the bankwith a 5% interest rate (risk-free).Recall that E(Y) = 0.9. Hence, E (Yp ) = 0.05 shows that p = 18 isthe fair price of the stock.

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 11 / 57

Page 12: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moments

Expectation as the Best Constant Predictor

Consider a constant predictor of X, say c.Mean Square Prediction Error

MSPE = E [(X − c)2]

It can be shown that

E(X) = argminc

E [(X − c)2]

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 12 / 57

Page 13: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moments

More on Expectation

In general, unless g(⋅) is linear,

E(g(X)) ≠ g(E(X))

For instance, in the previous example, g(X) = X2,

E(X2) = 2 ≠ 49= [E(X)]2

One more example,E ( 1

X) ≠

1E(X)

Proof: by Jensen’s Inequality

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 13 / 57

Page 14: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moments

Jensen’s Inequality

TheoremIf X is a random variable and g(⋅) is a convex function, then

E(g(X)) ≥ g(E(X))

Proof.Since g(⋅) is a convex function, there exist some constants a and bsuch that g(X) ≥ aX + b, and g(E(X)) = aE(X) + b.

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 14 / 57

Page 15: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moments

Standardized Random Variables

As expectation and variance are the two most importantmoments, sometimes we will denote the random variable as

X ∼ (E(X),Var(X)) or X ∼ (µ, σ 2)

Definition (Standardized Random Variables)Given X ∼ (µ, σ 2), and let

Z = X − µσ

Then Z ∼ (0, 1) is called a standardized random variable.

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 15 / 57

Page 16: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moments

Moments

k-th MomentsE(Xk)

k-th Central Moments

E[(X − E(X))k]

k-th Standardized Moments

γk = E⎛⎜⎝

⎡⎢⎢⎢⎢⎣

X − E(X)√Var(X)

⎤⎥⎥⎥⎥⎦

k⎞⎟⎠

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 16 / 57

Page 17: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moments

Expectation

E(X) = 0 vs. E(X) = 5 (Var(X) = 1)

−10 −5 0 5 10

0.0

0.1

0.2

0.3

0.4

x

f(x)

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 17 / 57

Page 18: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moments

Variance

Var(X) = 1 vs. Var(X) = 9 (E(X) = 0)

−10 −5 0 5 10

0.0

0.1

0.2

0.3

0.4

x

f(x)

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 18 / 57

Page 19: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moments

Skewness

3rd standardized moment (Skewness): γ3 = E [( X−E(X)√Var(X))

3]

γ3 > 0

0 5 10 15 20

0.00

0.05

0.10

0.15

0.20

x

f(x)

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 19 / 57

Page 20: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moments

Kurtosis

4th standardized moment (Kurtosis): γ4 = E [( X−E(X)√Var(X))

4]

Excess Kurtosis = γ4 − 3Fat tail: Excess Kurtosis > 0

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

x

f(x)

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 20 / 57

Page 21: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moment Generating Functions

Section 2

Moment Generating Functions

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 21 / 57

Page 22: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moment Generating Functions

Moment Generating Functions

Definition (MGF)Let X be a discrete (continuous) random variable, and the pmf (pdf)is f (x). Given h > 0 and for all −h < t < h, if the following function

MX(t) = E(e tX)

exists and is finite, it is called the moment generating function(MGF) of the random variable X.

One use the MGFs is that, in fact, it can generate moments of arandom variable.

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 22 / 57

Page 23: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moment Generating Functions

Properties

Theorem (Moment Generating)

E(Xk) = M(k)X (0) = M(k)X (t)∣t=0,

where M(k)X (t) denotes the k-th derivative of MX(t).

Proof: expand e tX as

e tX = 1 + tX + (tX)2

2!+(tX)33!+(tX)44!+⋯

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 23 / 57

Page 24: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moment Generating Functions

Properties

Theorem (Uniqueness)For all t ∈ (−h, h), if MX(t) = MY(t), then X and Y has exactly thesame distribution, FX(c) = FY(c) for all c ∈ R.

Proof: Beyond the scope of this course (via so-called the inverseFourier transform).

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 24 / 57

Page 25: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moment Generating Functions

Properties

Theorem (MGF of Linear Transformations)Given the MGF of X is MX(t). Let Y = aX + b, then

MY(t) = ebtMX(at).

Proof: By definition.

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 25 / 57

Page 26: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Moment Generating Functions

Examples

Find the MGFs of the following random variables:X ∼ Bernoulli(p)X ∼ Binomial(n, p)X ∼ Uniform[l , h]

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 26 / 57

Page 27: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Covariance and Correlation

Section 3

Covariance and Correlation

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 27 / 57

Page 28: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Covariance and Correlation

Expected Values of Functions of Bivariate Random Variables

DefinitionLet X and Y be discrete (continuous) random variables with jointpmf (pdf) fXY(x , y). Let g(X ,Y) be a function of these two randomvariables, then:

E[g(X ,Y)] =∑x∑yg(x , y) fXY(x , y)

E[g(X ,Y)] = ∫x∫

yg(x , y) fXY(x , y)dydx

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 28 / 57

Page 29: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Covariance and Correlation

Covariance

Definition (Covariance)

Cov(X ,Y) = E([X − E(X)][Y − E(Y)])

It is typically denoted by σXY .A measurement of comovement among two random variables.

x − E(X) y − E(Y) Cov(X ,Y)+ + +− − ++ − −− + −

It can be shown that

Cov(X ,Y) = E(XY) − E(X)E(Y)

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 29 / 57

Page 30: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Covariance and Correlation

Properties

TheoremGiven constants a, b, c, and d

E(aX + bY) = aE(X) + bE(Y)

Cov(X , X) = Var(X)

Cov(X , c) = 0

Var(aX + bY) = a2Var(X) + b2Var(Y) + 2abCov(X ,Y)

Cov(X ,Y) = E(XY) − E(X)E(Y)

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 30 / 57

Page 31: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Covariance and Correlation

Correlation Coefficient

Definition (Correlation Coefficient)The correlation coefficient is defined by

ρXY = Corr(X ,Y) =Cov(X ,Y)

√Var(X)

√Var(Y)

A unit-free measure of comovement.

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 31 / 57

Page 32: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Covariance and Correlation

Correlation Coefficient

TheoremThe correlation coefficient lies between 1 and -1:

−1 ≤ ρXY ≤ 1

Proof: by Cauchy-Schwarz inequality,

[E(UV)]2 ≤ E(U2)E(V 2)

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 32 / 57

Page 33: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Covariance and Correlation

Correlation Coefficient

Note:ρXY = 1 (perfect correlation)ρXY = −1 (perfect negative correlation)ρXY = 0 (zero correlation, no correlation, uncorrelated)

However, no correlation does not mean that there is norelationship between X and YIt just suggests that there is no linear relationship between X andY

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 33 / 57

Page 34: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Independent Bivariate Random Variables

Section 4

Independent Bivariate Random Variables

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 34 / 57

Page 35: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Independent Bivariate Random Variables

Expectation of Functions of Independent Bivariate Random Variables

TheoremLet X and Y are independent variables. Then

E[g(X)h(Y)] = E[g(X)]E[h(Y)]

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 35 / 57

Page 36: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Independent Bivariate Random Variables

Independent Bivariate Random Variables and MGF

TheoremX and Y are independent random variables. Their MGFs are MX(t)and MY(t), respectively. Let Z = X + Y , then

MZ(t) = MX(t)MY(t)

Proof. By definition and the previous theorem.Example: Revisit the MGF of a Binomial(n,p) random variable

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 36 / 57

Page 37: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Independent Bivariate Random Variables

Independent Bivariate Random Variables

TheoremGiven that X and Y are independent:

E(XY) = E(X)E(Y)

Cov(X ,Y) = 0

Var(X + Y) = Var(X) + Var(Y)

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 37 / 57

Page 38: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Independent Bivariate Random Variables

Independent vs. Uncorrelated

X, Y independent implies X, Y uncorrelated, however, the reverseis not true.

Independence require all possible realizations x and y to satisfy

P(X = x ,Y = y) = P(X = x)P(Y = y).

To check X, Y uncorrelated, only one equation needs to hold:

∑x∑y(x − E(X))(y − E(Y))P(X = x ,Y = y) = 0.

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 38 / 57

Page 39: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Independent Bivariate Random Variables

Example

Consider random variable X has the following distribution:

x P(X = x)

-1 1/30 1/31 1/3

Now let Y = X2

It can be shown that Cov(X ,Y) = 0 but clearly they are notindependent.

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 39 / 57

Page 40: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Conditional Expectation and Variance

Section 5

Conditional Expectation and Variance

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 40 / 57

Page 41: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Conditional Expectation and Variance

Conditional Expectation

DefinitionThe conditional expectation of Y given X = x is

E(Y ∣X = x) =∑yy fY ∣X=x(y)

E(Y ∣X = x) = ∫yy fY ∣X=x(y)dy

Hence, E(Y ∣X = x) = g(x)Since E(Y ∣X = x) is a function of x, it follows that

E(Y ∣X) = g(X)

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 41 / 57

Page 42: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Conditional Expectation and Variance

Conditional Variance

DefinitionThe conditional variance of Y given X = x is

Var(Y ∣X = x) = E([Y − E(Y ∣X = x)]2∣X = x)

Hence, Var(Y ∣X = x) = h(x)Since Var(Y ∣X = x) is also a function of x, it follows that

Var(Y ∣X) = h(X)

It can be shown that (will be shown later)

Var(Y ∣X = x) = E(Y 2∣X = x) − [E(Y ∣X = x)]2

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 42 / 57

Page 43: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Conditional Expectation and Variance

Example

Given two continuous random variables X and Y with joint pdf

fXY(x , y) =32,

supp(Y) = {y∣x2 < y < 1}, supp(X) = {x∣0 < x < 1}

Find fY ∣X=x(y), E(Y ∣X = x), and E(Y ∣X = 1/2).

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 43 / 57

Page 44: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Conditional Expectation and Variance

Important Theorems

TheoremUseful Rule

E[h(X)Y ∣X] = h(X)E[Y ∣X]

Simple Law of Iterated Expectation

E(E[Y ∣X]) = E(Y)

E(E[XY ∣X]) = E(XY)

Application:

Var(Y ∣X) = E(Y 2∣X) − [E(Y ∣X)]2

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 44 / 57

Page 45: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Conditional Expectation and Variance

Example

Given two continuous random variables X and Y with joint pdf

fXY(x , y) =32,

supp(Y) = {y∣x2 < y < 1}, supp(X) = {x∣0 < x < 1}

Find E(Y 2∣X = x), Var(Y ∣X = x), and Var(Y ∣X = 1/2).

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 45 / 57

Page 46: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Conditional Expectation and Variance

Important Theorems

Theorem (Variance Decomposition)

Var(Y) = Var(E(Y ∣X)) + E(Var(Y ∣X))

Example:X ∼ Bernoulli(P)

whereP ∼ Uniform[0,1]

Find E(X) and Var(X).

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 46 / 57

Page 47: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Conditional Expectation and Variance

Important Theorems

Theorem (Best Conditional Predictor)Conditional expectation E(Y ∣X) is the best conditional predictor of Yin the sense of minimizing the conditional mean squared error:

E(Y ∣X) = argming(X)

E[(Y − g(X))2]

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 47 / 57

Page 48: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Conditional Expectation and Variance

Example: GPA vs. Study Hours

Let Y = GPA, X = Study HoursWe would like to know E(Y ∣X) (to forecast Y)We further assume that E(Y ∣X) is a linear function:

E(Y ∣X) = α + βX

It can be shown that

β = E(XY) − E(X)E(Y)E(X2) − E(X)2

=Cov(X ,Y)Var(X)

α = E(Y) − βE(X)

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 48 / 57

Page 49: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Conditional Expectation and Variance

Example: GPA vs. Study Hours

We can define the forecast error as

є ≡ Y − E(Y ∣X) = Y − (α + βX)

Hence,Y = α + βX + є

Interpretation: your GPA is determined by(a) Systematic Part: α + βX, which can be explained by study hours(b) Irregular Part: є, which captures other factors other than study

hours. For instance, good/bad luck, mood, illness, etc.

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 49 / 57

Page 50: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Multivariate Random Variables

Section 6

Multivariate Random Variables

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 50 / 57

Page 51: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Multivariate Random Variables

Expected Values of Functions of Random Variables

For discrete random variables, the expected values ofg(X1, X2, . . . , Xn) is given by

E[g(X1, X2, . . . , Xn)]

=∑x1⋯∑

xng(x1, x2, . . . , xn) fX(x1, x2, . . . , xn)

For continuous random variables,

E[g(X1, X2, . . . , Xn)]

= ∫x1⋯∫

xng(x1, . . . , xn) fX(x1, . . . , xn)dxn⋯dx1

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 51 / 57

Page 52: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Multivariate Random Variables

Properties

E (n∑i=1

Xi) =n∑i=1

E(Xi)

Var (n∑i=1

Xi) =n∑i=1

Var(Xi) + 2n∑i=1

i−1∑j=1

Cov(Xi , X j)

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 52 / 57

Page 53: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Multivariate Random Variables

Expectation of Functions of Independent Random Variables

TheoremLet X1, X2, . . . , Xn are independent variables. Then

E[h(X1)h(X2)⋯h(Xn)] = E[h(X1)]E[h(X2)]⋯E[h(Xn)]

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 53 / 57

Page 54: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Multivariate Random Variables

Independent Random Variables and MGF

TheoremX1, X2,. . . , Xn are independent with MGF: MX1(t), MX2(t),. . .,MXn(t). Let Y = ∑n

i=1 Xi, then

MY(t) = MX1(t)MX2(t)⋯MXn(t) =n∏i=1

MX i(t)

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 54 / 57

Page 55: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Multivariate Random Variables

IID Random Variables

Given that {Xi}ni=1 are i.i.d. random variables.

Clearly,E(X1) = E(X2) = ⋯ = E(Xn)

Var(X1) = Var(X2) = ⋯ = Var(Xn)

Cov(Xi , X j) = 0 for any i ≠ j

I.I.D. random variables with mean µ and variance σ 2 are denotedby

{Xi}ni=1 ∼

i .i .d . (µ, σ 2)

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 55 / 57

Page 56: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Multivariate Random Variables

Properties of i.i.d. Random Variables

TheoremLet {Xi}

ni=1 are i.i.d. random variables with E(Xi) = µ and

Var(Xi) = σ 2, and let

Y =n∑i=1

Xi .

ThenE(Y) = nµ,

Var(Y) = nσ 2.

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 56 / 57

Page 57: Moments Shiu-Sheng Chen - 國立臺灣大學homepage.ntu.edu.tw/~sschen/Teaching/Lecture4_Moments_2019.pdf · Moments Shiu-Sheng Chen Department of Economics National Taiwan University

Multivariate Random Variables

Example

Let{Xi}

ni=1 ∼

i .i .d . Bernoulli(p)

That is,E(Xi) = p and Var(Xi) = p(1 − p)

LetY =

n∑i=1

Xi

What is the distribution of Y?Find E(Y) and Var(Y)

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 57 / 57