Top Banner
Molecular kinetics. Catalysis. Plan 1. Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok S.S. prepared
23

Molecular kinetics. Catalysis. Plan 1.Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok.

Dec 15, 2015

Download

Documents

Fiona Attridge
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Molecular kinetics. Catalysis. Plan 1.Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok.

Molecular kinetics. Catalysis.

Plan

1. Mechanism of Catalytic reactions

3. Characteristics of catalysts.

4. Types of catalysis.

5. Enzymes.

Assistant Kozachok S.S. prepared

Page 2: Molecular kinetics. Catalysis. Plan 1.Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok.

A substance which changes the speed of a reaction without being used itself is called a catalyst. The phenomenon of increasing the rate of reaction by the use of catalyst is called catalysis.

If а catalyst increases (accelerates) the speed of а reaction, it is called а positive catalyst and the phenomenon is called positive catalysis. On the other hand, if а catalyst decreases (retards) the speed of а reaction, it is called а negative catalyst and the phenomenon is called negative catalysis.

The catalysts may be of two main types:

Page 3: Molecular kinetics. Catalysis. Plan 1.Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok.

1. Homogeneous catalysts.

If the catalyst is present in the same phase as the reactants, it is called а homogeneous catalyst and this type of catalysis is called homogeneous catalysis.

NO(g)

2 SO2(g) + О2(g) ===== SO3(g)

Н+ (aq)

CH3COOC2H5(l) + Н2О(1) ===== СНЗСООН(1) +

C2H5OH(1)

Н+ (aq)

С12Н22О11 (aq) + Н2О (1) ====== С6Н12О6 (aq) + С6Н12О6 (aq)

Sucrose Glucose Fructose

Page 4: Molecular kinetics. Catalysis. Plan 1.Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok.

2. Heterogeneous catalysts.

If the catalyst is present in а different phase than the reactants, it is called а heterogeneous catalyst and this type of catalysis is called heterogeneous catalysis.

• Pt, 8000С

4NH3 + 5O2 ======== 4NO + 6Н2O

Page 5: Molecular kinetics. Catalysis. Plan 1.Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok.

Mechanism of Catalytic reactions1. Homogeneous catalytic reactions. These reactions can be explained on the basis of intermediate compound formation. According to this theory, the catalyst combines with one of the reactants to form an intermediate. Intermediate compound being unstable combines with the other reactant to form product. For example, the combination of SO2 and O2 to form SO3 is a slow process. However, in the presence of NO (catalyst), the reaction becomes fast.

It is believed that in this reaction nitric oxide combines with one of the reactants to form intermediate compound (NO2). This intermediate (NO2) combines readily with SO2 to form SO3 and the catalyst NO is regenerated in the last step.

Page 6: Molecular kinetics. Catalysis. Plan 1.Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok.
Page 7: Molecular kinetics. Catalysis. Plan 1.Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok.

2. Mechanism of heterogeneous catalytic reactions.The heterogeneous catalysis is a surface phenomenon. It involves the following steps:- Diffusion of the reactants at the surface of the catalyst.- Adsorption of the molecules of the reactants at the active sites.- Occurrence of the chemical reactions on the surface of the catalyst.- Desorption of products molecules from the surface.- Diffusion of products away from the surface of the catalyst.The role of heterogeneous catalysts can be explained in terms of adsorption of reactants on the surface of the catalyst. The adsorption helps the reaction in the following ways:1. Adsorption increases the concentration of reactant on the surface of the catalyst. Due to increased concentration of the reactants, the reactions proceed rapidly.2. Adsorbed molecules get dissociated to form active species like free radicals which react faster than molecules.3. The adsorbed molecules are not free to move about and therefore, they collide with other molecules on the surface.4. The heat of adsorption evolved acts as energy of activation for the reaction.

Page 8: Molecular kinetics. Catalysis. Plan 1.Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok.

Theory of heterogeneous catalysis

1. Adsorption theory

2. Multiplet’s theory

3. Тhe theory of the active ensembles (migrated atoms)

4. Electro-chemical theory (of free electrons and free valency)

Page 9: Molecular kinetics. Catalysis. Plan 1.Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok.

Types of catalysis

Positive Negative Autocatalysis

Homogeneous Heterogeneous Enzyme

Acid-base specific Acid-base unspecific

Page 10: Molecular kinetics. Catalysis. Plan 1.Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok.

Characteristics of catalysts:1. Activity. The ability of a catalyst to increase the rate of a chemical reaction is called activity. A catalyst may accelerate a reaction to as high as times. 2. Selectivity. The ability of the catalyst to direct a reaction to give a particular product.3. Small quantity. Only small quantity is need for a reaction.

4. Specific. One catalyst is need for specific reaction only 5. Physical properties may change during a reaction but no it does not take part in the reaction. 6. Catalyst doesn’t influence on the general stoichiometric coefficients.7. Catalysts decrease activation energy thus increase the chemical rate.8. Catalysts don’t influence on the equilibrium constant. They only reduce time of reaching the equilibrium and increase the rate of forward and back reaction.

Page 11: Molecular kinetics. Catalysis. Plan 1.Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok.
Page 12: Molecular kinetics. Catalysis. Plan 1.Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok.

EnzymesSubstance that acts as a catalyst in living organisms, regulating the rate at which life's chemical reactions proceed without being altered in the process. Enzymes catalyze all aspects of cell metabolism, including the digestion of food, in which large nutrient molecules (including proteins, carbohydrates, and fats) are broken down into smaller molecules; the conservation and transformation of chemical energy; and the construction of cellular materials and components. Enzymes are mainly proteins. In enzymatic reactions, the molecules at the beginning of the process are called substrates, and the enzyme converts them into different molecules, called the products.

Page 13: Molecular kinetics. Catalysis. Plan 1.Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok.

Like all catalysts, enzymes work by lowering the activation energy (Ea) for a reaction, thus dramatically increasing the rate of the reaction. Most enzyme reaction rates are millions of times faster than those of comparable un-catalyzed reactions. As with all catalysts, enzymes are not consumed by the reactions they catalyze, nor do they alter the equilibrium of these reactions. However, enzymes do differ from most other catalysts by being much more specific. Enzymes are known to catalyze about 4,000 biochemical reactions.

Page 14: Molecular kinetics. Catalysis. Plan 1.Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok.

Structure of proteins:

Most all enzymes are proteins; many depend on a nonprotein cofactor, either a loosely associated organic compound (e.g., a vitamin; see coenzyme) or a tightly bound metal ion (e.g., iron, zinc) or organic (often metal-containing) group. The enzyme-cofactor combination provides an active cpnfiguration, usually including an active site into which the substance (substrate) involved in the reaction can fit. Many enzymes are specific to one substrate.

Page 15: Molecular kinetics. Catalysis. Plan 1.Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok.

Mechanism of enzyme’s action:"Lock and key" model

Enzymes are very specific, and it was suggested by Emil Fischer in 1894 that this was because both the enzyme and the substrate possess specific complementary geometric shapes that fit exactly into one another. This is often referred to as "the lock and key" model. However, while this model explains enzyme specificity, it fails to explain the stabilization of the transition state that enzymes achieve. The "lock and key" model has proven inaccurate, and the induced fit model is the most currently accepted enzyme-substrate-coenzyme figure.

Page 16: Molecular kinetics. Catalysis. Plan 1.Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok.

Substrate entering active site of enzyme

Enzyme/substrate complex

Enzyme/products complex

Products leaving active site of enzyme

Substrate

Active site

Products

Page 17: Molecular kinetics. Catalysis. Plan 1.Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok.

Enzymes are classified by the type of reaction they catalyze:

1. Oxidation-reduction2. Transfer of a chemical group3. Hydrolysis 4. Removal or addition of a chemical group5. Isomerization6. Polymerization

Influence on the activity of enzymes:1. Enzyme activity can be affected by other molecules.Inhibitors are molecules that decrease enzyme activity; If a competing molecule blocks the active site or changes

its shape, the enzyme's activity is inhibited. If the enzyme's configuration is destroyed (denaturated), its activity is lost.

Page 18: Molecular kinetics. Catalysis. Plan 1.Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok.

Activators are molecules that increase activity.

Many drugs and poisons are enzyme inhibitors.

2. Activity is also affected by temperature

As is true for most chemical reactions, the rate of enzyme-catalyzed reactions generally increases with temperature, within the temperature range in which the enzyme is stable and retains full activity. The rate of most enzymatic reactions approximately doubles for each rise in temperature. Although enzyme-catalyzed reactions often appear to have an optimum temperature, the peak in such a plot of catalytic activity. Looking at the graph slope goes down it is temperature results because enzymes, being proteins, are denatured by heat and become inactive as temperature is raised beyond a certain point. Most enzymes are inactivated at temperatures above about 55 to

C010

C060

Page 19: Molecular kinetics. Catalysis. Plan 1.Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok.

Some are quite stable and retain activity at much higher temperature.

Page 20: Molecular kinetics. Catalysis. Plan 1.Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok.

3. Chemical environment (pH).4. The concentration of substrate.

Application of ensymes:Some enzymes are used commercially, for example, in the synthesis of antibiotics. In addition, some household products use enzymes to speed up biochemical reactions (e.g., enzymes in biological washing powders break down protein or fat stains on clothes; enzymes in meat tenderizers break down proteins, making the meat easier to chew).

Page 21: Molecular kinetics. Catalysis. Plan 1.Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok.

The optimal meaning of рН for enzymes

Enzyme Substrate рН

-fructofuranozydaza

Urease

Papain

Pepsin

Arginase

Saccharose

Urea

Protein

Protein

Arginine

4,5-6,6

6,7

5,0

1,5-2,0

9,5-9,9

Page 22: Molecular kinetics. Catalysis. Plan 1.Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok.

Using enzymes in medicineThe action The name

They make better the digestion function

Pepsin, mezym , phestal, pancreatyn

Antiviral Dezoxy-ribonuclease

Antiseptic Trypsin, lidaza, hemotrypsyn

Page 23: Molecular kinetics. Catalysis. Plan 1.Mechanism of Catalytic reactions 3. Characteristics of catalysts. 4. Types of catalysis. 5. Enzymes. Assistant Kozachok.