Top Banner
MODULE II EMULSION PRACTICUM REPORT RESERVOIR FLUIDS NAME : Hangga Yudha Wibisono STUDENT ID NUMBER : 12213083 GROUP : 9 (Shift Friday Afternoon) PRACTICUM DATE : 7 November 2014 SUBMISSION DATE : 21 November 2014 LECTURER : Ir. Zuher Syihab., M.Sc., Ph.D. MODULE ASSISTANTS : 1. Wilson Santana 12211023 2. Irianto Petrus Binsardo 12211061 RESERVOIR FLUIDS ANALYSIS LABORATORY PETROLEUM ENGINEERING DEPARTMENT BANDUNG INSTITUTE OF TECHNOLOGY 2014
17
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: [Module 2_12213083]

MODULE II

EMULSION

PRACTICUM REPORT

RESERVOIR FLUIDS

NAME : Hangga Yudha Wibisono

STUDENT ID NUMBER : 12213083

GROUP : 9 (Shift Friday Afternoon)

PRACTICUM DATE : 7 November 2014

SUBMISSION DATE : 21 November 2014

LECTURER : Ir. Zuher Syihab., M.Sc., Ph.D.

MODULE ASSISTANTS : 1. Wilson Santana 12211023

2. Irianto Petrus Binsardo 12211061

RESERVOIR FLUIDS ANALYSIS LABORATORY

PETROLEUM ENGINEERING DEPARTMENT

BANDUNG INSTITUTE OF TECHNOLOGY

2014

Page 2: [Module 2_12213083]

1

CONTENT

LIST OF TABLES ......................................................................................................... 2

LIST OF GRAPHS ........................................................................................................ 3

CH. I PREFACE ..................................................................................................... 4

1.1 Practicum Title .................................................................................. 4

1.2 Practicum Objectives ......................................................................... 4

1.3 Principle Theory ................................................................................ 4

1.4 Equipments And Materials ................................................................ 4

CH. II DATA TABULATION ................................................................................ 5

2.1 Data ............................................................................................................ 5

2.2 Data Tabulation .......................................................................................... 5

CH. III DATA ANALYSIS .................................................................................... 12

3.1 Practicum Assumption ..................................................................... 12

3.2 Analysis ........................................................................................... 12

3.2.1 Process Analysis .................................................................. 12

3.2.2 Data Analysis ....................................................................... 13

CH. IV CONCLUSION ........................................................................................... 14

COMMENTS ............................................................................................................... 15

CITATIONS ................................................................................................................ 16

Page 3: [Module 2_12213083]

2

LIST OF TABLES

page

TABLE 2.1 Volume of Water, Oil, and Emulsion ................................................. 5

2.2 Volume Data at 650 RPM ................................................................... 5

2.3 Volume Data at 850 RPM ................................................................... 6

2.4 Volume Data at 1050 RPM ................................................................. 7

2.5 Volume Data for Chemical Adding .................................................... 8

2.6 Volume Data for Heating Treatment .................................................. 9

Page 4: [Module 2_12213083]

3

LIST OF GRAPICHS

page

Graphic 2.1 Graph for Water Volume Fraction vs Time at 650 RPM .................... 6

2.2 Graph for Water Volume Fraction vs Time at 850 RPM .................... 7

2.3 Graph for Water Volume Fraction vs Time at 1050 RPM .................. 8

2.4 Graph for Water Volume Fraction vs Time for Chemical Adding ..... 9

2.5 Graph for Water Volume Fraction vs Time for Heating Treatment... 10

2.6 Graph for Comparison of Three Methods of Emulsion Separation ... 11

Page 5: [Module 2_12213083]

4

CHAPTER I

PREFACE

1.1 Practicum Title

Emulsion

1.2 Practicum Objectives

Understanding how and why emulsion form

Understanding the demulsification process

1.3 Principal Theory

Emulsion is combination between two kind of liquid which is immiscible

(cannot be mixed at normal condition). Generally, emulsion between water and

oil is devided in to Normal Emulsion and Reverse Emulsion. Normal Emulsion

(W/O) is an emulsion that the water act as internal phase (dispersed) and oil act

as external phase. Reverse Emulsion (O/W) is an emulsion that is the opposite

of reverse Emulsion.

There are several condition that is needed to form emulsion:

1. Two immiscible liquid

2. Stirring process

3. Emulsifying agent

In emulsion case ther is emulsifier and demulsifier. Emulsifier is surface

active substance that accelerates the forming process of emulsion by decreasing

the interfacial tension. While demulsifier function is to decrease the effect of

emulsifier.

1.4 Equipments and Materials

1. 3 Beaker Glass 250 cc 5. Stopwatch

2. 4 Beaker Glass 100 cc 6. Crude oil, formation water, and aquades

3. Mixer 7. Demulsifier

4. Bunsen

Page 6: [Module 2_12213083]

5

CHAPTER II

DATA TABULATION

2.1 Data

Methods

Volume (mL)

Water Oil Emulsion Final Water

Volume

650 RPM 60 40 94 37

850 RPM 60 40 94 37

1050 RPM 60 40 96 35

Demulsifier + 1050 RPM 60 40 95 39,5

Heating + 1050 RPM 60 40 95 40

Table 2.1 Volume of Water, Oil, and Emulsion

2.2 Data Tabulation

2.2.1 Agitation Factor in Emulsion Stability

a. 650 RPM

Initial volume (Total volume) = 94 mL

Time (s) Cumulative Volume of

Water (mL)

Cumulative Volume /

Total Volume

30 13 0,138297872

60 26,5 0,281914894

90 31,5 0,335106383

120 34 0,361702128

150 35 0,372340426

180 36 0,382978723

210 36,5 0,388297872

240 37 0,393617021

270 37 0,393617021

300 37 0,393617021

330 37 0,393617021

360 37 0,393617021

Table 2.2 Volume Data at 650 RPM

Page 7: [Module 2_12213083]

6

Graphic 2.1 Graph for Water Volume Fraction vs Time at 650 RPM

b. 850 RPM

Initial volume (Total volume) = 94 mL

Time (s) Cumulative Volume of

Water (mL)

Cumulative Volume /

Total Volume

30 8 0,085106383

60 22 0,234042553

90 30 0,319148936

120 34 0,361702128

150 36 0,382978723

180 37 0,393617021

210 37 0,393617021

240 37 0,393617021

270 37 0,393617021

300 37 0,393617021

Table 2.3 Volume Data at 850 RPM

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0 50 100 150 200 250 300 350 400

WA

TE

R V

OL

UM

E F

RA

CT

ION

TIME (S)

Water Volume Fraction Vs Time

Page 8: [Module 2_12213083]

7

Graphic 2.2 Graph for Water Volume Fraction vs Time at 850 RPM

c. 1050 RPM

Initial volume (Total volume) = 96 mL

Time (s) Cumulative Volume

of Water (mL)

Cumulative

Volume / Total

Volume

30 0 0

60 14 0,145833333

90 24 0,250000000

120 30 0,312500000

150 33 0,343750000

180 34 0,354166667

210 35 0,364583333

240 35 0,364583333

270 35 0,364583333

300 35 0,364583333

330 35 0,364583333

Table 2.4 Volume Data at 1050 RPM

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0 50 100 150 200 250 300 350

WA

TE

R V

OL

UM

E F

RA

CT

ION

TIME (S)

Water Volume Fraction vs Time

Page 9: [Module 2_12213083]

8

Graphic 2.3 Graph for Water Volume Fraction vs Time at 1050 RPM

2.2.2 Emulsion Separation by Chemical Adding (Using Demulsifier)

At the first, the emulsion is agitated by mixer on 1050 RPM.

Initial volume (Total volume) = 95 mL.

Table 2.5 Volume Data for Chemical Adding

Time (s) Cumulative Volume of

Water (mL)

Cumulative Volume /

Total Volume

30 10 0,105263158

60 21 0,221052632

90 26 0,273684211

120 29 0,305263158

150 32 0,336842105

180 34 0,357894737

210 36 0,378947368

240 38 0,400000000

270 38,5 0,405263158

300 39 0,410526316

330 39,5 0,415789474

360 39,5 0,415789474

390 39,5 0,415789474

420 39,5 0,415789474

450 39,5 0,415789474

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0 50 100 150 200 250 300 350

WA

TE

R V

OL

UM

E F

RA

CT

ION

TIME (S)

Water Volume Fraction vs Time

Page 10: [Module 2_12213083]

9

Graphic 2.4 Graph for Water Volume Fraction vs Time for Chemical Adding

2.2.3 Emulsion Separation by Heating Treatment

Time (s)

Cumulative

Volume of Water

(mL)

Cumulative

Volume / Total

Volume

30 0 0

60 5 0,052631579

90 8 0,084210526

120 9 0,094736842

150 10 0,105263158

180 12 0,126315789

210 15 0,157894737

240 18 0,189473684

270 21 0,221052632

300 23 0,242105263

330 26 0,273684211

360 28 0,294736842

390 30 0,315789474

420 32 0,336842105

450 34 0,357894737

480 35 0,368421053

510 36 0,378947368

540 38 0,400000000

570 39 0,410526316

600 39 0,410526316

630 40 0,421052632

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0 100 200 300 400 500

WA

TE

R V

OL

UM

E F

RA

CT

ION

TIME (S)

Water Volume Fraction vs Time

Page 11: [Module 2_12213083]

10

660 40 0,421052632

690 40 0,421052632

720 40 0,421052632

750 40 0,421052632

Table 2.6 Volume Data for Heating Treatment

Graphic 2.5 Graph for Water Volume Fraction vs Time for Heating Treatment

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0 100 200 300 400 500 600 700 800

WA

TE

R V

OL

UM

E F

RA

CT

ION

TIME (S)

Water Volume Fraction vs Time

Page 12: [Module 2_12213083]

11

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

30 120 210 300 390 480 510 540 570

WA

TE

R V

OL

UM

E F

RA

CT

ION

TIME (S)

Water Volume Fraction vs Time

650 RPM 850 RPM 1050 RPM Demulsifier Heating

Graphic 2.5 Graph for Comparison of Three Methods of Emulsion Separation

Page 13: [Module 2_12213083]

12

CHAPTER III

DATA ANALYSIS

3.1 Practicum Assumption

In this practicum, we use some assumption, in order to make this practicum

more valid. The assumptions we use are :

1. Room temperature and pressure were constant.

2. When we do the separation using heating and demulsifier method, we assume that

gravity doesn’t take many effect .

3. There was no dissolved substance in crude oil (pure).

4. There was no force between the fluids and glass wall.

5. No effect to the emulsion when we pour the emulsion to measuring glass after

agitating.

6. The stirrer of the mixer mix all of the components of emulsion.

7. There is no residue when we pour the crude oil sample and emulsion to the

measuring glass.

3.2 Analysis

3.2.1 Process Analysis

In this practicum, we try to separate emulsion using three methods. The

first method is gravity settling. Here, we let the emulsion to separate naturally using

the different density of the particel. Principal basic of gravity settling is the

heaviest substance will drop to the bottom of mixture during demulsification and

the light substance will be in the top.

The second method, we use demulsifier. Principally, demulsifier will

decrease the power of film layer that separate either oil or water to another.

Demulsifier works in order to make the droplets to flocculate. Tiny droplets will

come closer to each other. Then the droplets or dispersed phase will unite and make

a bigger droplets (coalescence). And finally, the dispersed phase will separate

perfectly from the continue phase.

The last method, we use heat to separate emulsion. The calor we gave will

unstable the emulsion and separate it into two phase. Ideally, the most efficient

method should be demulsifier method.

Page 14: [Module 2_12213083]

13

3.2.2 Data Analysis

Actually, we didn’t get the data of emulsion separation using the gravity

settling method. We can’t see the separation of emulsion, so we use the other group

data to complete the data.

From the graphic 2.6 above, we can see that the emulsion separation using

gravity settling, which the emulsion we give treatment with agitation at 650 rpm

was faster among the other treatment. This case happened because when the

emulsion stirred faster, the size of the droplet which formed became smaller than

the emulsion which stirred slower. This mean, the emulsion is more stable and the

water would take more time to flocculate and finally separate from the emulsion.

And we can conclude the faster the agitation we gave, it will take more time to

separate the emulsion.

From literature, the most effective method are heating and using

demulsifier (chemical adding). The reason is, when we use heating to separate

emulsion, the kinetic energy of dispersed molecul increase and they will collide

the film layer which prevent the oil molecul and other oil molecul with water

molecul and other water molecul to unite. This cause the stability of emulsion is

disturbed.

However, from the experiment that we have already done, the most

effective separation method is using gravity settling with emulsion which we give

agitation at 650 RPM. The demulsifier didn’t give the most effective method to

separate emulsion. This happen because of the characteristic of the demulsifier

itself. A demulsifier only work specifically with a specific kind of oil, and instead

will be emulsifier to other kind of oil. So, it is possible that the demulsifier and the

oil we use do not match.

CHAPTER IV

Page 15: [Module 2_12213083]

14

CONCLUSION

1. Emulsion is formed from two different liquid which are immiscible and agitated so

the slighter liquid will be dispersed in the major liquid.

2. The higher speed of agitation we gave, the more stable emulsion is formed.

3. Demulsifying process can be done by heating, gravity settling, and adding

demulsifier.

4. The principal work of heating method is increasing the speed of water particle

because of its kinetic energy, and we hope that the oil molecules or water molecules

collide each other and broke the film layer.

5. Adding demulsifier will make film layer that block dispersed molecule dissolved.

6. Principal work of gravity settling method is different density of two different liquid.

7. Quality of demulsifier influences the demulsifying process. Bad quality and non

suitable demulsifier will make demulsifying process longer.

Page 16: [Module 2_12213083]

15

COMMENTS

This is my second English week reservoir fluid laboratory session. The pretest

from Bang Wilson and Bang Peter is so hard, and the result, my score and my other

friend’s score from the pretest is really bad. Actually the pretest is not that hard, it is

just the pretest take the problem from McCain book, however our group just study the

things at the module. Well, that become our lesson not to underestimate the pre test.

During the practicum, there are several problem, including we don’t get the data from

gravity settling method, etc. But, overall i really happy with this module, because this

is our last module, and no one got kicked at this module. Thanks to Bang Wilson and

Bang Peter.

Page 17: [Module 2_12213083]

16

CITATIONS

McCain, William D. Jr. 1990. Properties of Petroleum Fluids: Second Edition.

Oklahoma : PennWell Books

Marhaendrajana, Taufan. 2005. Diktat Kuliah Fluida Reservoir. Bandung : Teknik

Perminyakan ITB

Siagian, Ucok. 2002. Diktat Kuliah Fluida Reservoir. Bandung : Teknik Perminyakan

ITB

Laboratorium Analisa Fluida Reservoir. 2014. Buku Petunjuk Praktikum Fluida

Reservoir. Bandung: TM ITB.