Top Banner
Theory Observations Modified Gravity A brief tour Miguel Zumalac´ arregui Instituto de F´ ısicaTe´oricaIFT-UAM-CSIC IFT-UAM Cosmology meeting IFT, February 2013, Madrid Miguel Zumalac´ arregui Modified Gravity
34

Modified Gravity - a brief tour

Jul 04, 2015

Download

Documents

Miguel Zuma

very brief overview of alternative theories of gravity and the means to test them
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Modified Gravity - a brief tour

TheoryObservations

Modified GravityA brief tour

Miguel Zumalacarregui

Instituto de Fısica Teorica IFT-UAM-CSIC

IFT-UAM Cosmology meeting

IFT, February 2013, Madrid

Miguel Zumalacarregui Modified Gravity

Page 2: Modified Gravity - a brief tour

TheoryObservations

Outline

1 TheoryIntroductionModified Gravities

2 ObservationsSolar SystemCosmology

3) Conclusions

Miguel Zumalacarregui Modified Gravity

Page 3: Modified Gravity - a brief tour

TheoryObservations

IntroductionModified Gravities

Introduction

? Why Modified Gravity?

Mystery: Λ and CDM problems

Observational Outliers

(LSS bulk motions, halo profiles, satellite galaxies...)

Testing General Relativity

⇒ Model independence of cosmological probes

Main Points

Many different scenarios for modified gravity

Need to analyze in a (sufficiently) self consistent way

Miguel Zumalacarregui Modified Gravity

Page 4: Modified Gravity - a brief tour

TheoryObservations

IntroductionModified Gravities

Introduction

? Why Modified Gravity?

Mystery: Λ and CDM problems

Observational Outliers

(LSS bulk motions, halo profiles, satellite galaxies...)

Testing General Relativity

⇒ Model independence of cosmological probes

Main Points

Many different scenarios for modified gravity

Need to analyze in a (sufficiently) self consistent way

Miguel Zumalacarregui Modified Gravity

Page 5: Modified Gravity - a brief tour

TheoryObservations

IntroductionModified Gravities

Einstein’s Theory

Lovelock’s Theorem (1971)

gµν + Local + 4-D + Lorentz Theory with 2nd order Eqs∗

√−g 1

16πG(R− 2Λ)

∗ Theories with higher time derivatives unstable: E → −∞(Ostrogradski’s Theorem)

Acceptable modifications (Clifton et al. 1106.2476):

Higher derivatives

Additional fields

Extra dimensions

Weird stuff: Lorentz violation, non-local, non-metric...

Miguel Zumalacarregui Modified Gravity

Page 6: Modified Gravity - a brief tour

TheoryObservations

IntroductionModified Gravities

Einstein’s Theory

Lovelock’s Theorem (1971)

gµν + Local + 4-D + Lorentz Theory with 2nd order Eqs∗

√−g 1

16πG(R− 2Λ)

∗ Theories with higher time derivatives unstable: E → −∞(Ostrogradski’s Theorem)

Acceptable modifications (Clifton et al. 1106.2476):

Higher derivatives

Additional fields

Extra dimensions

Weird stuff: Lorentz violation, non-local, non-metric...

Miguel Zumalacarregui Modified Gravity

Page 7: Modified Gravity - a brief tour

TheoryObservations

IntroductionModified Gravities

Beyond Einstein’s Theory: Examples

? Higher derivatives: f(R) gravity −→ Equivalent to h(φ)R+ · · ·

? Additional fields:�� ��Scalar: φ

- Vector: Aµ, e.g. TeVeS (alternative to DM)

- Tensor: hµν Massive gravity −→ scalar φ in decoupling limit

? Extra dimensions:

- DGP → φ = brane location in extra dim.

- Kaluza-Klein → φ ∝ volume of compact dim.

? Weird stuff: Non-local ⊃ R e−�/M2∗

� R

- Lorentz violation: Horava-Lifschitz gravity �ξ → −ξ + ~∇4ξ

Miguel Zumalacarregui Modified Gravity

Page 8: Modified Gravity - a brief tour

TheoryObservations

IntroductionModified Gravities

Beyond Einstein’s Theory: Examples

? Higher derivatives: f(R) gravity −→ Equivalent to h(φ)R+ · · ·

? Additional fields:�� ��Scalar: φ

- Vector: Aµ, e.g. TeVeS (alternative to DM)

- Tensor: hµν Massive gravity −→ scalar φ in decoupling limit

? Extra dimensions:

- DGP → φ = brane location in extra dim.

- Kaluza-Klein → φ ∝ volume of compact dim.

? Weird stuff: Non-local ⊃ R e−�/M2∗

� R

- Lorentz violation: Horava-Lifschitz gravity �ξ → −ξ + ~∇4ξ

Miguel Zumalacarregui Modified Gravity

Page 9: Modified Gravity - a brief tour

TheoryObservations

IntroductionModified Gravities

Beyond Einstein’s Theory: Examples

? Higher derivatives: f(R) gravity −→ Equivalent to h(φ)R+ · · ·

? Additional fields:�� ��Scalar: φ

- Vector: Aµ, e.g. TeVeS (alternative to DM)

- Tensor: hµν Massive gravity −→ scalar φ in decoupling limit

? Extra dimensions:

- DGP → φ = brane location in extra dim.

- Kaluza-Klein → φ ∝ volume of compact dim.

? Weird stuff: Non-local ⊃ R e−�/M2∗

� R

- Lorentz violation: Horava-Lifschitz gravity �ξ → −ξ + ~∇4ξ

Miguel Zumalacarregui Modified Gravity

Page 10: Modified Gravity - a brief tour

TheoryObservations

IntroductionModified Gravities

Beyond Einstein’s Theory: Examples

? Higher derivatives: f(R) gravity −→ Equivalent to h(φ)R+ · · ·

? Additional fields:�� ��Scalar: φ

- Vector: Aµ, e.g. TeVeS (alternative to DM)

- Tensor: hµν Massive gravity −→ scalar φ in decoupling limit

? Extra dimensions:

- DGP → φ = brane location in extra dim.

- Kaluza-Klein → φ ∝ volume of compact dim.

? Weird stuff: Non-local ⊃ R e−�/M2∗

� R

- Lorentz violation: Horava-Lifschitz gravity �ξ → −ξ + ~∇4ξ

Miguel Zumalacarregui Modified Gravity

Page 11: Modified Gravity - a brief tour

TheoryObservations

IntroductionModified Gravities

Scalar-Tensor Theories

? Scalar fields arise in many contexts:

geometry of extra dimensions

f(R), decoupling limit of massive gravity, etc...

? Isotropy friendly → no prefered directions

? Most general: Horndenski’s Theory → 4 functions of φ, (∂φ)2:

L2 = K[φ, (∂φ)2]→ no φ↔ Rµν interaction (dark energy)

L3,L4,L5 explicit couplings φ↔ Rµν (modified gravity)

? Also interacing DM: scalar couples only to DM

Miguel Zumalacarregui Modified Gravity

Page 12: Modified Gravity - a brief tour

TheoryObservations

IntroductionModified Gravities

Scalar-Tensor Theories

? Scalar fields arise in many contexts:

geometry of extra dimensions

f(R), decoupling limit of massive gravity, etc...

? Isotropy friendly → no prefered directions

? Most general: Horndenski’s Theory → 4 functions of φ, (∂φ)2:

L2 = K[φ, (∂φ)2]→ no φ↔ Rµν interaction (dark energy)

L3,L4,L5 explicit couplings φ↔ Rµν (modified gravity)

? Also interacing DM: scalar couples only to DM

Miguel Zumalacarregui Modified Gravity

Page 13: Modified Gravity - a brief tour

TheoryObservations

IntroductionModified Gravities

Scalar-Tensor Theories

? Scalar fields arise in many contexts:

geometry of extra dimensions

f(R), decoupling limit of massive gravity, etc...

? Isotropy friendly → no prefered directions

? Most general: Horndenski’s Theory → 4 functions of φ, (∂φ)2:

L2 = K[φ, (∂φ)2]→ no φ↔ Rµν interaction (dark energy)

L3,L4,L5 explicit couplings φ↔ Rµν (modified gravity)

? Also interacing DM: scalar couples only to DM

Miguel Zumalacarregui Modified Gravity

Page 14: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Local Gravity Tests

Transform to Einstein-frame: L =√−gR

16πG+ Lm (gµν [φ])︸ ︷︷ ︸

matter metric

+Lφ

Matter follows geodesic of gµν rather than gµν

⇒ φ mediates an additional force ~F ∝ ~∇φ

Constrained by laboratory and Solar System tests:

Perihelion precession, Lunar laser ranging... → massive bodies

Gravitational light bending, time delay... → light geodesics

e.g. http://relativity.livingreviews.org/Articles/lrr-2001-4/

Miguel Zumalacarregui Modified Gravity

Page 15: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Local Gravity Tests

Transform to Einstein-frame: L =√−gR

16πG+ Lm (gµν [φ])︸ ︷︷ ︸

matter metric

+Lφ

Matter follows geodesic of gµν rather than gµν

⇒ φ mediates an additional force ~F ∝ ~∇φ

Constrained by laboratory and Solar System tests:

Perihelion precession, Lunar laser ranging... → massive bodies

Gravitational light bending, time delay... → light geodesics

e.g. http://relativity.livingreviews.org/Articles/lrr-2001-4/

Miguel Zumalacarregui Modified Gravity

Page 16: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Screening Mechanisms�� ��Non-linear interactions → Hide φ around massive bodies

Screening from V (φ)

Chameleon: ρ dependent field range: φ ∝ e−mφr

r

Symmetron: ρ dependent coupling to matter

Only surface contribution from screened objects: Qφ � QG.

Screening from ∇∇φ

Vainshtein: interaction suppressed for r � rV =(rsm2∗

) 13

significant scalar force for r > rV : Qφ ≈ QGDisformal: field evolution independent of ρ (if ρ� m4

∗)

(Lam Hui’s lectures: www.slideshare.net/CosmoAIMS/hui-modified-gravity)

Miguel Zumalacarregui Modified Gravity

Page 17: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Screening Mechanisms�� ��Non-linear interactions → Hide φ around massive bodies

Screening from V (φ)

Chameleon: ρ dependent field range: φ ∝ e−mφr

r

Symmetron: ρ dependent coupling to matter

Only surface contribution from screened objects: Qφ � QG.

Screening from ∇∇φ

Vainshtein: interaction suppressed for r � rV =(rsm2∗

) 13

significant scalar force for r > rV : Qφ ≈ QGDisformal: field evolution independent of ρ (if ρ� m4

∗)

(Lam Hui’s lectures: www.slideshare.net/CosmoAIMS/hui-modified-gravity)

Miguel Zumalacarregui Modified Gravity

Page 18: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Cosmology

? Scalars can source cosmic acceleration:

Effective Cosmological Constant: Λ→ V (φ) + 12(∂φ)2

Self-acceleration: H ≈ constant is solution.

Einstein frame: Energy transfer

∇µTµνm = −∇µTµνφ = −Qφ,ν

? Geometric measurements (DL, DA) can’t distinguish

dark energy (Q = 0) from modified gravity (Q 6= 0)

? Perturbations: Additional force if Q 6= 0

Miguel Zumalacarregui Modified Gravity

Page 19: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Cosmology

? Scalars can source cosmic acceleration:

Effective Cosmological Constant: Λ→ V (φ) + 12(∂φ)2

Self-acceleration: H ≈ constant is solution.

Einstein frame: Energy transfer

∇µTµνm = −∇µTµνφ = −Qφ,ν

? Geometric measurements (DL, DA) can’t distinguish

dark energy (Q = 0) from modified gravity (Q 6= 0)

? Perturbations: Additional force if Q 6= 0

Miguel Zumalacarregui Modified Gravity

Page 20: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Linear Perturbations

Quasi-static approximation on sub-horizon scales

Neglect time derivatives, keep terms ∝ k2

a2 , δ ≡ δρρ

δ + 2Hδ ≈ 4π Geff(k, t) ρmδ (effective gravitational constant)

Φ = − η(k, t) Ψ (anisotropic parameter)

f(R) gravity:Geff

G=

1

f ′1 + 4(f ′′/f ′)(k/a)2

1 + 3(f ′′/f ′)(k/a)2, η =

1 + 2(f ′′/f ′)(k/a)2

1 + 4(f ′′/f ′)(k/a)2

43

enhancement on small scales (De Felice et al. 1108.4242).

Parameterized Post-Friedmann framework (PPF)

General treatment of linear perturbations → O(20) free functions(e.g. Baker et al. 1209.2117).

Miguel Zumalacarregui Modified Gravity

Page 21: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Linear Perturbations

Quasi-static approximation on sub-horizon scales

Neglect time derivatives, keep terms ∝ k2

a2 , δ ≡ δρρ

δ + 2Hδ ≈ 4π Geff(k, t) ρmδ (effective gravitational constant)

Φ = − η(k, t) Ψ (anisotropic parameter)

f(R) gravity:Geff

G=

1

f ′1 + 4(f ′′/f ′)(k/a)2

1 + 3(f ′′/f ′)(k/a)2, η =

1 + 2(f ′′/f ′)(k/a)2

1 + 4(f ′′/f ′)(k/a)2

43

enhancement on small scales (De Felice et al. 1108.4242).

Parameterized Post-Friedmann framework (PPF)

General treatment of linear perturbations → O(20) free functions(e.g. Baker et al. 1209.2117).

Miguel Zumalacarregui Modified Gravity

Page 22: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Linear Perturbations

Quasi-static approximation on sub-horizon scales

Neglect time derivatives, keep terms ∝ k2

a2 , δ ≡ δρρ

δ + 2Hδ ≈ 4π Geff(k, t) ρmδ (effective gravitational constant)

Φ = − η(k, t) Ψ (anisotropic parameter)

f(R) gravity:Geff

G=

1

f ′1 + 4(f ′′/f ′)(k/a)2

1 + 3(f ′′/f ′)(k/a)2, η =

1 + 2(f ′′/f ′)(k/a)2

1 + 4(f ′′/f ′)(k/a)2

43

enhancement on small scales (De Felice et al. 1108.4242).

Parameterized Post-Friedmann framework (PPF)

General treatment of linear perturbations → O(20) free functions(e.g. Baker et al. 1209.2117).

Miguel Zumalacarregui Modified Gravity

Page 23: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Non-Linear Perturbations

- Higher order PT very hard, especially beyond GR

fromM. Baldi

1109.5695

- N-body simulations computationally expensive:

Non-linear equation for φ(~x, t): Solve on a grid.

Usually assume quasi-static field evolution φ, φ ∼ 0

yet necessary to access small scales!

Miguel Zumalacarregui Modified Gravity

Page 24: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Dynamical Observables: Matter and Light

? Large Scale Structure:

P (k) → linear & non-linear, limited by bias

Peculiar velocities/RSD → f = d log(δ)d log(a) (linear)

Bispectrum → non-linear

Cluster abundances & profiles → non-linear scales!

Voids → test low ρ environments

? Cosmic Microwave Background

Integrated Sachs Wolfe → measures Φ− Ψ, small statistics

? Weak gravitational lensing:

Shear → measures Φ + Ψ, complementary to P (k),non-linear scales, systematics

Miguel Zumalacarregui Modified Gravity

Page 25: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Dynamical Observables: Matter and Light

? Large Scale Structure:

P (k) → linear & non-linear, limited by bias

Peculiar velocities/RSD → f = d log(δ)d log(a) (linear)

Bispectrum → non-linear

Cluster abundances & profiles → non-linear scales!

Voids → test low ρ environments

? Cosmic Microwave Background

Integrated Sachs Wolfe → measures Φ− Ψ, small statistics

? Weak gravitational lensing:

Shear → measures Φ + Ψ, complementary to P (k),non-linear scales, systematics

Miguel Zumalacarregui Modified Gravity

Page 26: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Dynamical Observables: Matter and Light

? Large Scale Structure:

P (k) → linear & non-linear, limited by bias

Peculiar velocities/RSD → f = d log(δ)d log(a) (linear)

Bispectrum → non-linear

Cluster abundances & profiles → non-linear scales!

Voids → test low ρ environments

? Cosmic Microwave Background

Integrated Sachs Wolfe → measures Φ− Ψ, small statistics

? Weak gravitational lensing:

Shear → measures Φ + Ψ, complementary to P (k),non-linear scales, systematics

Miguel Zumalacarregui Modified Gravity

Page 27: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Dynamical Observables: Matter and Light

? Large Scale Structure:

P (k) → linear & non-linear, limited by bias

Peculiar velocities/RSD → f = d log(δ)d log(a) (linear)

Bispectrum → non-linear

Cluster abundances & profiles → non-linear scales!

Voids → test low ρ environments

? Cosmic Microwave Background

Integrated Sachs Wolfe → measures Φ− Ψ, small statistics

? Weak gravitational lensing:

Shear → measures Φ + Ψ, complementary to P (k),non-linear scales, systematics

Miguel Zumalacarregui Modified Gravity

Page 28: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Dynamical Observables: Matter and Light

? Large Scale Structure:

P (k) → linear & non-linear, limited by bias

Peculiar velocities/RSD → f = d log(δ)d log(a) (linear)

Bispectrum → non-linear

Cluster abundances & profiles → non-linear scales!

Voids → test low ρ environments

? Cosmic Microwave Background

Integrated Sachs Wolfe → measures Φ− Ψ, small statistics

? Weak gravitational lensing:

Shear → measures Φ + Ψ, complementary to P (k),non-linear scales, systematics

Miguel Zumalacarregui Modified Gravity

Page 29: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Theory vs Observations

No pure test of gravity: probes sensitive to several effects(expansion, neutrinos, primordial non-Gaussianity...)

⇒ Complementarity is essential

Ideally: self consistent analysis → assume MG on all stepsor at least keep track of assumptions:

Poisson eq. Φ 6= 4πk2GρkMatter geodesics xi 6= −∇iΦGalaxy biasCalibration with simulations

· · ·

Miguel Zumalacarregui Modified Gravity

Page 30: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Theory vs Observations

No pure test of gravity: probes sensitive to several effects(expansion, neutrinos, primordial non-Gaussianity...)

⇒ Complementarity is essential

Ideally: self consistent analysis → assume MG on all stepsor at least keep track of assumptions:

Poisson eq. Φ 6= 4πk2GρkMatter geodesics xi 6= −∇iΦGalaxy biasCalibration with simulations

· · ·

Miguel Zumalacarregui Modified Gravity

Page 31: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Conclusions

Many possible modifications of gravity (not only f(R)!)

Scalar-tensor encompass many of them in some limit

Screening mechanisms to pass local gravity tests

Cosmology: need dynamical data to distinguish DE from MG(LSS, CMB, lensing...)

Theory vs Data: exploit complementarity and bearassumptions in mind

Doubts? check the Bible of modified gravity:

- Clifton et al. 2011 ”Modified Gravity and Cosmology” 1106.2476

Miguel Zumalacarregui Modified Gravity

Page 32: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Backup Slides

Miguel Zumalacarregui Modified Gravity

Page 33: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

The Frontiers of Gravity

What is the most general possible theory of gravity?

Ostrogradski’s Theorem (1850)

Theories with L ⊃ ∂nq

∂tn, n ≥ 2 are unstable∗

q(t), L(q, q, q)→ ∂L

∂q− d

dt

∂L

∂q+

d2

dt2∂L

∂q= 0

q, q, q,...q → Q1, Q2, P1, P2

(P1,2 ≡ ∂L/∂Q1,2

)H = P1Q2 + terms independent of P1

∗ If no...q ,

....q in the Equations ⇒ Loophole

Miguel Zumalacarregui Modified Gravity

Page 34: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Most General Scalar-Tensor theory

Horndenski’s Theory (1974)

gµν +�� ��φ + Local + 4-D + Lorentz Theory with 2nd order Eqs.

⇒ ∃ 4 free functions of φ, X ≡ −12φ,µφ

L2 = G2(X,φ) −→ No φ↔ gµν interaction

L3 = −G3�φ −→ eqs ⊃ G3,XRµνφ,µφ,ν

L4 = G4R +G4,X

[(�φ)2 − φ;µνφ

;µν]

L5 = G5Gµνφ;µν

− 16G5,X

[(�φ)3 − 3(�φ)φ;µνφ

;µν + 2φ ;ν;µ φ ;λ

;ν φ ;µ;λ

]Miguel Zumalacarregui Modified Gravity