Top Banner
Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex systems (21-23 june 2010) [email protected]
48

Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Jul 31, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Modelling global epidemics: theory andsimulations

Marc BarthélemyCEA, IPhT, France

Manchester meeting Modelling complex systems (21-23 june 2010)

[email protected]

Page 2: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Outline

Introduction

Metapopulation model: applications

SARS Testing strategies

Metapopulation model: theory

Pandemic threshold

Discussion and perspectives

Page 3: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Epidemiology: an interdisciplinary field

TransportationTransportation systemssystems

Biology,Biology,virologyvirology

UrbanismUrbanism

SocialSocialnetworksnetworks

Page 4: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Epidemiology and statistical physics

Microscopic level (bacteria, viruses): compartments

Understanding and killing off new viruses

Quest for new vaccines and medicines

Macroscopic level (communities, species)

Integrating biology, movements and interactions

Vaccination campaigns and immunization strategies

statistical physics

Page 5: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Pandemic spread modeling: past and current

Human movements and disease spread

Black death (14th)Spatial diffusionModel:

Page 6: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Pandemic spread modeling: past and current Complex movement patterns: different means, different scales (SARS):

Importance of transportation networks (air travel)

Nov. 2002

Mar. 2003

Page 7: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Modeling in Epidemiology: parameters,realism, simplicity, …

Pandemic modelling(metapopopulation)Social network Intra urban

spread

Page 8: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Metapopulation model

Baroyan et al, 1969:≈40 russian cities

Rvachev & Longini, 1985: 50 airports worldwide

Grais et al, 1988: 150 airports in the US

Hufnagel et al, 2004: 500 top airports worldwide

Colizza et al, 2006: >99% of the total traffic

l j pop j

pop l

Page 9: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Stochastic model:

• SIS model:

• SIR model:

• SI model:

λ: proba. per unit time of transmitting the infection µ: proba. per unit time of recovering

One population: Simple models of epidemics

Page 10: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Stochastic model:

• SIS or SIR model (mean-field):

λ: proba. per unit time of transmitting the infection µ: proba. per unit time of recovering

One population: Simple models of epidemics

Page 11: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Modeling: SIR with spatial diffusion i(x,t):

where: λ = transmission coefficient (fleas->rats->humans) µ=1/average infectious period S0=population density, D=diffusion coefficient

One population: diffusion effect

Page 12: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Metapopulation model(mean-field)

Rvachev Longini (1985)

Flahault & Valleron (1985); Hufnagel et al, PNAS 2004, Colizza, Barrat, Barthelemy, VespignaniPNAS 2006, BMB, 2006. Theory: Colizza & Vespignani, Gautreau & al, …

Inner city term(one population homogeneous mixing)

Travel term(network)

Transport operator (mean-field):

Reaction-diffusion modelsFKPP equation

Page 13: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Stochastic model

compartmental model + air transportation data

Susceptible

Infected

Recovered

Page 14: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Metapopulation model

!

pPAR,FCO ="PAR,FCONPAR

#t

Travel probabilityfrom PAR to FCO:

ξPAR,FCO

ξPAR,FCO

# passengersfrom PAR to FCO(input data)

Page 15: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Metapopulation model(mean-field)

Reaction-diffusion models Reaction at each node Diffusion

FKPP equation (continuous limit, d=1)

Page 16: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Metapopulation model: Applications

Testing against historical examples

SARS (2003)

Testing strategies

Antivirals: cooperative versus egoistic strategies

Travel restrictions

Page 17: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Application: SARS

pop j

pop i

refined compartmentalization

parameter estimation: clinical data + local fit

geotemporal initial conditions: available empirical data

modeling intervention measures: standard effective modeling

Page 18: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

SARS: predictions

Page 19: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

SARS: predictions (2)

Colizza, Barrat, Barthelemy & Vespignani, bmc med (2007)

Page 20: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

More from SARS - Epidemic pathways

For every infected country:

where is the epidemic coming from ?

- Redo the simulation for many disorder realizations(same initial conditions)

- Monitor the occurrence of the paths(source-infected country)

Page 21: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex
Page 22: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Existence of pathways:

confirms the possibility of epidemic forecasting !

Useful information for control strategies

SARS- what did we learn ?

Metapopulation model, no tunable parameter:

good agreement with WHO data !

Page 23: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Application of the metapopulation model: effect ofantivirals

Threat:Flu

Question: use of antivirals

Best strategy for the countries ?

Model:

Etiology of the disease (compartments)

Metapopulation+Transportation mode (air travel)

Page 24: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Predictions: pandemic flu

Page 25: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Effect of antivirals

Comparison of strategies

“Uncooperative”: each country stockpiles AV

“Cooperative”: each country gives 10% (20%) of its own stock

Baseline: reference point (no antivirals)

Travel restrictions

Page 26: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Travel limitations….

Colizza, Barrat, Barthélemy, Valleron, Vespignani. PLoS Medicine (2007)

Page 27: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Effect of antivirals: Strategy comparison

Best strategy: Cooperative !

Colizza, Barrat, Barthelemy, Valleron, Vespignani, PLoS Med (2007)

Page 28: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Metapopulation model: theory

Theoretical questions

Effect of heterogeneity on the predictability

Arrival time ?

Epidemic threshold ? At what conditions can a diseasebecome a pandemic ?

Page 29: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

One outbreak realization:

Another outbreak realization ? Effect of noise ?

? ? ? ? ? ?

Predictability

Page 30: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Overlap measure

Similarity between 2 outbreak realizations:

Overlap function

time t time t

1)( =! t

time t time t

1)( <! t

Page 31: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Predictability

no degree fluctuationsno weight fluctuations

+ degreeheterogeneity

+ weightheterogeneity

Colizza, Barrat, Barthelemy & Vespignani, PNAS (2006)

Page 32: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Effect of heterogeneity:

degree heterogeneity: decreases predictability

Weight heterogeneity: increases predictability !

Good news: Existence of preferred channels !

Epidemic forecast, risk analysis of containment strategies

j

lwjl

Predictability

Page 33: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Once a city is infected:

- what is the condition for non-extinction in the city ? (R0>1)

- will it spread to other cities ?

- will it invade the whole world ?

- can we express a condition of the form R*>1 ?

Pandemic threshold

Page 34: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

One population: SIR (stochastic version)

Page 35: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

• Epidemic threshold =critical point• Prevalence i =orderparameter

Epidemic Threshold λc (SIR, SIS,…)

i

λλ c

Active phaseAbsorbingphase

Finite prevalenceVirus death

Density of infected

One population: main results

Basic reproductive number:

Page 36: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Probability of extinction (stochastic version):

One population: main results

Number of infected individuals at t=0

Page 37: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Assumptions:

- Cities with the same population N

- p: probability per unit time for any individual to jump from one node to one of its neighbor

Many populations connectedthough a network

Page 38: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Assumptions (cont’d): Uncorrelated, complexnetwork:

- Degree distribution P(k), moments

- Percolation threshold:

- Scale-free networks:

Many populations connectedthough a network

Page 39: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Building block: two cities

City 0 City 1

Proba p

Proba q

p=0.01, q=0R0=2

Page 40: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Arrival time probability in city 1 of an infected individual:

Building block: two cities

Cumulative:

Page 41: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Condition for a network

Condition for a pandemic spread:

Explicitely (SIR):

Barthelemy, Godreche, Luck (2010)

Page 42: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Consequences (1)

Scale-free network:

Travel restrictions inefficient !

In agreement with a simple mean-field argument[Colizza & Vespignani, PRL (2007)]

Page 43: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Consequences (2)

d=1: pc=1 finite cluster

Page 44: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Consequences (3)

d=2 and Bethe lattice: pc<1

Fraction ofinfected

cities

Page 45: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Conclusions

Metapopulation model

Works for modeling pandemic spread

Mostly numerical results, many theoretical problems(reaction-diffusion on networks)

Existence of a “pandemic threshold” connected topercolation

Page 46: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Perspectives

Population and travel probabilities (broadly)distributed: effect on the pandemic threshold ?

Challenges of modern epidemiology:

Smaller scales ? (urban area)

Human mobility and city structure: statisticalcharacterization ? Models ?

Page 47: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Numerical studies on the metapopulation model

- A. Barrat (CPT, Marseille)

- V. Colizza (ISI, Turin)

- A.-J. Valleron (Inserm, Paris)

- A. Vespignani (IU, Bloomington)

Theoretical analysis of the metapopulation model

- C. Godrèche (IPhT, CEA)

- J.-M. Luck (IPhT, CEA)

Collaborators (metapopulation model)

Page 48: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Thank you.