Top Banner
MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTIMODEL COMPARISON By Kenneth Gillingham, William Nordhaus, David Anthoff, Geoffrey Blanford, Valentina Bosetti, Peter Christensen, Haewon McJeon, John Reilly, and Paul Sztorc September 2015 COWLES FOUNDATION DISCUSSION PAPER NO. 2022 COWLES FOUNDATION FOR RESEARCH IN ECONOMICS YALE UNIVERSITY Box 208281 New Haven, Connecticut 06520-8281 http://cowles.yale.edu/
67

MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

Jul 19, 2018

Download

Documents

dinhkhue
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

MODELING UNCERTAINTY IN CLIMATE CHANGE: A MULTI‐MODEL COMPARISON

By

Kenneth Gillingham, William Nordhaus, David Anthoff, Geoffrey Blanford, Valentina Bosetti, Peter Christensen,

Haewon McJeon, John Reilly, and Paul Sztorc

September 2015

COWLES FOUNDATION DISCUSSION PAPER NO. 2022

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS YALE UNIVERSITY

Box 208281 New Haven, Connecticut 06520-8281

http://cowles.yale.edu/

Page 2: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      1 

ModelingUncertaintyinClimateChange:

AMulti‐ModelComparison1

KennethGillingham,WilliamNordhaus,DavidAnthoff,GeoffreyBlanford,ValentinaBosetti,PeterChristensen,HaewonMcJeon,JohnReilly,PaulSztorc

September17,2015

Abstract

Theeconomicsofclimatechangeinvolvesavastarrayofuncertainties,complicatingboththeanalysisanddevelopmentofclimatepolicy.Thisstudypresentstheresultsofthefirstcomprehensivestudyofuncertaintyinclimatechangeusingmultipleintegratedassessmentmodels.Thestudylooksatmodelandparametricuncertaintiesforpopulation,totalfactorproductivity,andclimatesensitivity.Itestimatesthepdfsofkeyoutputvariables,includingCO2concentrations,temperature,damages,andthesocialcostofcarbon(SCC).Onekeyfindingisthatparametricuncertaintyismoreimportantthanuncertaintyinmodelstructure.Ourresultingpdfsalsoprovideinsightsontailevents.

                                                            1TheauthorsaregratefultotheDepartmentofEnergyandtheNationalScienceFoundationforprimarysupportoftheproject.ReillyandMcJeonacknowledgesupportbytheU.S.DepartmentofEnergy,OfficeofScience.ReillyalsoacknowledgestheothersponsorstheMITJointProgramontheScienceandPolicyofGlobalChangelistedathttp://globalchange.mit.edu/sponsors/all.TheStanfordEnergyModelingForumhasprovidedsupportthroughitsSnowmasssummerworkshops.KennethGillinghamcurrentlyworksasaSeniorEconomistfortheCouncilofEconomicAdvisers(CEA).TheCEAdisclaimsresponsibilityforanyoftheviewsexpressedherein,andtheseviewsdonotnecessarilyrepresenttheviewsoftheCEAortheUnitedStatesgovernment.Noneoftheauthorshasaconflictofinteresttodisclose.KennethGillinghamandWilliamNordhausarecorrespondingauthors([email protected]@yale.edu).

Page 3: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      2 

I. Introduction

Acentralissueintheeconomicsofclimatechangeisunderstandinganddealingwiththevastarrayofuncertainties.Theserangefromthoseregardingeconomicandpopulationgrowth,emissionsintensitiesandnewtechnologies,tothecarboncycle,climateresponse,anddamages,andcascadetothecostsandbenefitsofdifferentpolicyobjectives.

Thispaperpresentsthefirstcomprehensivestudyofuncertaintyofmajoroutcomesforclimatechangeusingmultipleintegratedassessmentmodels(IAMs).ThesixmodelsusedinthestudyarerepresentativeofthemodelsusedintheIPCCFifthAssessmentReport(IPCC2014)andintheU.S.governmentInteragencyWorkingGroupReportontheSocialCostofCarbonorSCC(USInteragencyWorkingGroup2013).Wefocusoureffortsinthisstudyonthreekeyuncertainparameters:populationgrowth,totalfactorproductivitygrowth,andequilibriumclimatesensitivity.Fortheestimateduncertaintyinthesethreeparameters,wedevelopestimatesoftheuncertaintyto2100formajorvariables,suchasemissions,concentrations,temperature,percapitaconsumption,output,damages,andthesocialcostofcarbon.

Ourapproachisatwo‐trackmethodologythatpermitsreliablequantificationofuncertaintyformodelsofdifferentsizeandcomplexity.Thefirsttrackinvolvesperformingmodelrunsoverasetofgridpointsandfittingasurfaceresponsefunctiontothemodelresults;thisapproachprovidesaquickandaccuratewaytoemulaterunningthemodels.Thesecondtrackdevelopsprobabilitydensityfunctionsforthechoseninputparameters(i.e.,theparameterpdfs)usingthebestavailableevidence.WethencombinebothtracksbyperformingMonteCarlosimulationsusingtheparameterpdfsandthesurfaceresponsefunctions.

Thismethodologyprovidesatransparentapproachtoaddressinguncertaintyacrossmultipleparametersandmodelsandcaneasilybeappliedtoadditionalmodelsanduncertainparameters.Animportantaspectofthismethodology,unlikevirtuallyallothermodelcomparisonexercises,isitsreplicability.Theapproachiseasilyvalidatedbecausethedatafromthecalibrationexercisesarerelativelycompactandarecompiledinacompatibleformat,thesurfaceresponsescanbeestimatedindependently,andtheMonteCarlosimulationscanbeeasilyruninmultipleexistingsoftwarepackages.

Thispaperisstructuredasfollows.Thenextsectiondiscussesthestatisticalconsiderationsunderpinningourstudyofuncertaintyinclimatechange.SectionIIIpresentsourmethodologyforthetwo‐trackapproach,whilethenextsectiondiscussesselectionofcalibrationruns.SectionVgivesthederivationofthe

Page 4: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      3 

probabilitydistributions.SectionVIgivestheresultsofthemodelcalculationsandthesurfaceresponsefunctions,andsectionVIIpresentstheresultsoftheMonteCarloestimatesofuncertainties.WeconcludewithasummaryofthemajorfindingsinsectionVIII.TheAppendicesprovidefurtherbackgroundinformation.

II. StatisticalConsiderations

A. BackgroundonUncertaintyinClimateChange

Climatechangescienceandpolicyhavefocusedlargelyonprojectingthecentraltendenciesofmajorvariablesandimpacts.Whilecentraltendenciesareclearlyimportantforafirst‐levelunderstanding,attentionisincreasinglyontheuncertaintiesintheprojections.Uncertaintiestakeongreatsignificancebecauseofthepossibilityofnon‐linearitiesinresponses,particularlythepotentialfortriggeringthresholdsinearthsystems,inecosystem,orineconomicoutcomes.Tobesure,uncertaintieshavebeenexploredinmajorreports,suchastheIPCCScientificAssessmentReportsfromthefirsttothefifth.However,thesehavemainlyexamineddifferencesamongmodelsasatoolforassessinguncertaintiesaboutfutureprojections.Asweindicatebelow,ourresultssuggestthatparametricuncertaintyisquantitativelymoreimportantthandifferencesacrossmodelsformostvariables.

Inrecentreviewsofclimatechange,thereisanincreasingfocusonimprovingourunderstandingoftheuncertainties.Forexample,in2010theInter‐AcademyReviewoftheIPCC,theprimaryrecommendationforimprovingtheusefulnessofthereportwasaboutuncertainty:

Theevolvingnatureofclimatescience,thelongtimescalesinvolved,

andthedifficultiesofpredictinghumanimpactsonandresponsestoclimatechangemeanthatmanyoftheresultspresentedinIPCCassessmentreportshaveinherentlyuncertaincomponents.Toinformpolicydecisionsproperly,itisimportantforuncertaintiestobecharacterizedandcommunicatedclearlyandcoherently.(InterAcademyCouncil2010)

Inarecentreport,theU.S.CongressionalBudgetOfficealsovoiceditsconcernsaboutuncertainty:

Inassessingthepotentialrisksfromclimatechangeandthecostsofavertingit,however,researchersandpolicymakersencounterpervasiveuncertainty.Thatuncertaintycontributestogreat

Page 5: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      4 

differencesofopinionastotheappropriatepolicyresponse,withsomeexpertsseeinglittleornothreatandothersfindingcauseforimmediate,extensiveaction.Policymakersarethusconfrontedwithawiderangeofrecommendationsabouthowtoaddresstherisksposedbyachangingclimate—inparticular,whether,how,andhowmuchtolimitemissionsofgreenhousegases.(CBO2005)

Thefocusonuncertaintyhastakenonincreasedurgencybecauseofthegreatattentiongivenbyscientiststotippingelementsintheearthsystem.AninfluentialstudybyLentonetal.(2008)discussedimportanttippingelementssuchasthelargeicesheets,large‐scaleoceancirculation,andtropicalrainforests.Someclimatologistshavearguedthatglobalwarmingbeyond2°CwillleadtoanirreversiblemeltingoftheGreenlandicesheet(Robinsonetal.2012).Onceuncertaintiesarefullyincluded,policieswillneedtoaccountfortheprobabilitythatpathsmayleadacrosstippingpoints,withparticularconcernforonesthathaveirreversibleelements.

Afurthersetofquestionsinvolvesthepotentialforfattailsinthedistributionofparameters,ofoutcomes,andoftheriskofcatastrophicclimatechange.(Afat‐orthick‐taileddistributionisonewheretheprobabilityofextremeeventsdeclinesslowly,sothetailofthedistributionisthick.Animportantexampleisthepower‐laworParetodistribution,inwhichthevarianceoftheprocessisunboundedforcertainparametervalues.)

Theissuearisesbecauseofthecombinationofoutcomesthatarepotentiallycatastrophicinnatureandprobabilitydistributionswithfattails.Thecombinationofthesetwofactorsmayleadtosituationsinwhichfocusingoncentraltendenciesiscompletelymisleadingforpolicyanalysis.Inaseriesofpapers,MartinWeitzman(seeespeciallyWeitzman2009)hasproposedadramaticallydifferentconclusionfromstandardanalysisinwhathehascalledtheDismalTheorem.Intheextremecase,thecombinationoffattails,unlimitedexposure,andhighriskaversionimpliesthattheexpectedlossfromcertainriskssuchasclimatechangeisunboundedandwethereforecannotperformstandardoptimizationcalculationsorcost‐benefitanalyses.

Therearetodatemanystudiesoftheimplicationsofuncertaintyforclimatechangeandclimate‐changepolicyorofuncertaintyinoneormanyparametersusingasinglemodel.SomenotableexamplesincludeReillyetal.(1987),PeckandTeisberg(1993),NordhausandPopp(1997),Pizer(1999),Webster(2002),Baker(2005),Hope(2006),Nordhaus(2008),Websteretal.(2012),AnthoffandTol(2013),andLemoineandMcJeon(2013).

Page 6: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      5 

Todate,however,theonlypublishedstudythataimstoquantifyuncertaintyinclimatechangeformultiplemodelsistheU.S.governmentInteragencyWorkingGroupreportonthesocialcostofcarbon,whichispublishedinGreenstoneetal.(2013)andmoreextensivelydescribedinIAWG(2010).Thisstudyusedthreemodels,twoofwhichareincludedinthisstudy,toestimatethesocialcostofcarbonforU.S.governmentpurposes.However,whileitdidexamineuncertainty,thecross‐modelcomparisonfocusedonasingleuncertainparameter(equilibriumclimatesensitivity)foritsformaluncertaintyanalysis;allotheruncertainparametersinthemodelswereleftuncertainwiththemodelers’pdfs.Evenwiththissingleuncertainparameter,theestimatedsocialcostofcarbonvariesgreatly.The2015socialcostofcarbonintheupdatedIAWG(2013)is$38pertonofCO2usingthemedianestimateversus$109pertonofCO2usingthe95percentile(bothin2007dollarsandusinga3%discountrate),whichwouldimplyverydifferentlevelsofpolicystringency.TheIAWGanalysisalsousedcombinationsofmodelinputsandoutputsthatwerenotalwaysinternallyconsistent.Comparisonoftheuncertaintiesinaconsistentmannerindifferentmodelsisclearlyanimportantmissingareaofstudy.

B. Centralapproachofthisstudy

Thisprojectaimstoquantifytheuncertaintiesofkeymodeloutcomesinducedbyuncertaintyinimportantparameters.Wehopetolearnthedegreetowhichthereisprecisioninthepointestimatesofmajorvariablesthatareusedinmajorintegratedassessmentmodels.Putdifferently,theresearchquestionweaimtoanswerfromthisstudyis:Howdomajorparameteruncertaintiesaffectthedistributionofpossibleoutcomesofmajoroutcomes;andwhatisthelevelofuncertaintyofmajoroutcomevariables?

Wecallthisquestiononeof“classicalstatisticalforecastuncertainty.”Thestudyofforecastinguncertaintyanderrorhasalonghistoryinstatisticsandeconometrics.SeeforexampleClementsandHendry(1998,1999)andEricsson(2001).Thestandardtoolsofforecastinguncertaintyhavevirtuallyneverbeenappliedtomodelsintheenergy‐climate‐economyareasbecauseofthecomplexityofthemodelsandthenon‐probabilisticnatureofbothinputsandstructuralrelationships.

Keyuncertaintiesthatwewillexamineincludebothprojectionsandpolicyoutcomes.Forexample,whataretheuncertaintiesofemissions,concentrations,temperatureincreases,anddamagesinabaselineprojection?Whatistheuncertaintyinthesocialcostofcarbon?Howdouncertaintiesacrossmodelscomparewiththeuncertaintieswithinmodelsgeneratedbyparameteruncertainty?

Page 7: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      6 

Oneofthekeycontributionsofthisworkisthatithasthepotentialtohighlightareaswherereducinguncertaintywillhaveahighpayoff.

C. Uncertaintyinabroadercontext

Thereareseveraluncertaintiesinclimatechangethatfacebothnaturalandsocialscientistsanddecisionmakers.Amongtheimportantonesare:(1)parametricuncertainty,suchasuncertaintyaboutclimatesensitivityoroutputgrowth;(2)modelorspecificationuncertainty,suchasthespecificationoftheaggregateproductionfunction;(3)measurementerror,suchasthelevelandtrendofglobaltemperatures;(4)algorithmicerrors,suchasonesthatfindtheincorrectsolutiontoamodel;(5)randomerrorinstructuralequations,suchasthoseduetoweathershocks;(6)codingerrorsinwritingtheprogramforthemodel;and(7)scientificuncertaintyorerror,suchaswhenamodelcontainsanerroneoustheory. Thisstudyfocusesprimarilyonthefirstofthese,parametricuncertainty,andtoalimitedextentonthesecond,modeluncertainty.Wefocusonthefirstbecausetherearemajoruncertaintiesaboutseveralparameters,becausethishasbeenakeyareaforstudyinearlierapproaches,andbecauseitisatypeofuncertaintythatlendsitselfmostreadilytomodelcomparisons.Inaddition,sinceweemploysixmodels,theresultsprovidesomeinformationabouttheroleofmodeluncertainty,althoughwedonotdevelopaformalapproachtomodeluncertainty.Werecognizethatparameterandmodeluncertaintiesarebuttwooftheimportantquestionsthatarise,butarigorousapproachtomeasuringthecontributionoftheseuncertaintieswillmakeamajorcontributiontounderstandingtheoveralluncertaintyofclimatechange. Fromatheoreticalpointofview,themeasuresofuncertaintycanbeviewedasapplyingtheprinciplesofjudgmentalorsubjectiveprobability,or“degreeofbelief,”tomeasuringfutureuncertainties.Thisapproach,whichhasitsrootsintheworksofRamsey(1931),deFinetti(1937),andSavage(1954),recognizesthatitisnotpossibletoobtainfrequentistoractuarialprobabilitydistributionsforthemajorparametersinintegratedassessmentmodelsorinthestructuresofthemodels.Thetheoryofsubjectiveprobabilityviewstheprobabilitiesasakintotheoddsthatinformedscientistswouldtakewhenwageringontheoutcomeofanuncertainevent.Forexample,supposetheeventwaspopulationgrowthfrom2000to2050.Thesubjectiveprobabilitymightbethattheinterquartilerange(25%,75%)wasbetween0.5%and2.0%peryear.Inmakingtheassessment,thescientistwouldineffectsaythatitisamatterofindifferencewhethertobetthattheoutcomewhenknownwouldbeinsideoroutsidethatrange.Whileitisnotcontemplatedthatabet

Page 8: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      7 

wouldactuallyoccur(althoughthatisnotunprecedented),thewagerapproachhelpsframetheprobabilitycalculation.

III. Methodology

A. Overviewofourtwotrackapproach

Inundertakinganuncertaintyanalysis,theprojectcontemplatedtwopotentialapproaches.Inoneapproach,eachmodelwoulddoaMonteCarlosimulationinwhichitwoulddomanyrunswherethechosenuncertainparametersaredrawnfromajointpdf.Whilepotentiallyfeasibleforsomemodels,suchanapproachisexcessivelyburdensomeandlikelyinfeasibleatthescalenecessarytohavereliableestimates.

Wethereforedevelopedasecondapproachwhichwecallthe“two‐trackMonteCarlo.”ThisapproachseparatesthemodelcalibrationrunsfromgenerationoftheparameterpdfsandtheMonteCarloestimates.Atthecoreoftheapproacharetwoparalleltracks,whicharethencombinedtoproducethefinalresults.Thefirsttrackusesmodelrunsfromsixparticipatingeconomicclimatechangeintegratedassessmentmodelstodevelopsurfaceresponsefunctions;theserunsprovidetherelationshipbetweenouruncertaininputparametersandkeyoutputvariables.Thesecondtrackdevelopsprobabilitydensityfunctionscharacterizingtheuncertaintyforeachanalyzeduncertaininputparameter.WecombinetheresultsofthetwotracksusingaMonteCarlosimulationtocharacterizestatisticaluncertaintyintheoutputvariables.

B. Theapproachinequations

Itwillbehelpfultoshowthestructureoftheapproachanalytically.Wecanrepresentamodelasamappingfromexogenousandpolicyvariablesandparameterstoendogenousoutcomes.Themodelscanbewrittensymbolicallyasfollows:

(1) ( , , )m mY H z u

Inthisschema,Ymisavectorofmodeloutputsformodelm;zisavectorofexogenousandpolicyvariables; isavectorofmodelparameters;uisavectorofuncertainparameterstobeinvestigated;andHmrepresentsthemodelstructure.Weemphasizethatmodelshavedifferentstructures,modelparameters,andchoiceofinputvariables.However,wecanrepresenttheargumentsofHwithoutreferencetomodelsbyassumingsomeareomitted.

Page 9: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      8 

Thefirststepintheprojectistoselecttheuncertainparametersforanalysis.Oncetheparametersareselected,eachmodelthendoesselectedcalibrationruns.Thecalibrationrunstakeasacentralsetofparametersthebaseorreferencecaseforeachofthemodels.Itthenmakesseveralrunsthataddorsubtractspecifiedincrementsfromeachofthebasevaluesoftheuncertainparameters.Thisproducesasetofinputandoutputsforeachmodel.

Moreprecisely,hereistheprocedureforthefirsttrackoftheapproach.Eachmodelhasabaselinerunwithbasevaluesforeachoftheuncertainparameters.

Denotethebaseparametervaluesas ,1 ,2 ,3( , , ).b b bm m mu u u Thenextstepdeterminesagrid

ofdeviationvaluesoftheuncertainparametersthateachmodeladdsorsubtractsfromthebasevaluesoftheuncertainparameters.Denotethesedeviationvaluesas

1,1,1 1,1,2 5,5,5( , ,..., ).G The G vectorrepresents125=5x5x5deviationsfrom

themodelers’baseparametervalues.So,forexample,thevector 1,1,1 would

representoneofthe125gridvectorsthattakesthefirstvalueforeachuncertainparameter.Supposethat 1,1,1 ( 0.014, .02, 2). Thenthatcalibrationrunwould

calculatetheoutcomesfor ,1 ,2 ,3( , , .014, .02, 2)m m b b bm m mY H z u u u ,whereagain ,

bm ku is

thebasevalueforuncertainparameterkformodelm.Similarly, 3,3,3 (0,0,0). For

thatdeviationvalue,thecalibrationrunwouldcalculatetheoutcomesfor

,1 ,2 ,3( , , , , ),m m b b bm m mY H z u u u whichisthemodelbaselinerun.

Thethirdstepistoestimatesurfaceresponsefunctions(SRFs)foreachmodelandvariableoutcome.Symbolically,thesearethefollowingfunctions:

(2) 1 ,1 2 ,2 3 ,3 ,1 ,2 ,3( , , ) ( , , )m m b b b mm m m m m mY R u u u u u u R u u u

TheSRFsarefitovertheobservationsofthe ,m ku fromthecalibrationexercises

(125eachforthebaselineandforthecarbon‐taxcases).TheSRFsarelinear‐quadratic‐interactionequationsasdescribedbelow.

Thesecondtrackoftheprojectprovidesuswithprobabilitydensityfunctions

foreachofouruncertainparameters, ( )kkf u .Thesearedevelopedonthebasisof

externalinformationasdescribedbelow.

Thefinalstepistoestimatethecumulativedistributionoftheoutputvariables, ( ).m mG Y Thesearethedistributionsoftheoutcomevariables mY for

Page 10: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      9 

modelm,wherewenotethatthedistributionswilldifferbymodel.ThedistributionsarecalculatedbyMonteCarlomethods,forasamplesizeofN:

(3) ,1 ,2 ,31

( ) 1 if ( , , ) , otherwise = 0 /N

m m m n n n mm m m

n

G Y H u u u Y N

Thenotationhereisthat ,n

m ku isthenthdrawofrandomvariable ku inthe

MonteCarloexperiment.ThisunintuitiveequationsimplystatesthatthecumulativedistributionisequaltothefractionofoutcomesintheMonteCarlosimulationwheretheSRFyieldsavalueoftheoutcomevariablethatislessthan .mY Thedistributionofoutcomesforeachvariableandmodelisconditionalonthemodelstructureandontheharmonizeduncertaintyoftheuncertainparameters.ForaclassicstudyofMonteCarlomethods,seeHammersleyandHandscomb(1964).

C. IntegratedAssessmentModels

Thechallengeofanalysisandpoliciesforglobalwarmingisparticularlydifficultbecauseitspansmanydisciplinesandpartsofsociety.Thismany‐facetednaturealsoposesachallengetonaturalandsocialscientists,whomustincorporateawidevarietyofgeophysical,economic,andpoliticaldisciplinesintotheirdiagnosesandprescriptions.Thetaskofintegratedassessmentmodels(IAMs)istopulltogetherthedifferentaspectsofaproblemsothatprojections,analyses,anddecisionscanconsidersimultaneouslyallimportantendogenousvariables.IAMsgenerallydonotpretendtohavethemostdetailedandcompleterepresentationofeachincludedsystem.Rather,theyaspiretohave,atafirstlevelofapproximation,modelsthatoperateallthemodulessimultaneouslyandwithreasonableaccuracy.

ThestudydesignwaspresentedatameetingwheremanyoftheestablishedmodelerswhobuildandoperateIAMswerepresent.Allwereinvitedtoparticipate.Aftersomepreliminaryinvestigationsandtrialruns,sixmodelswereabletoincorporatethemajoruncertainparametersintotheirmodelsandtoprovidemostoftheoutputsthatwerenecessaryformodelcomparisons.Thefollowingisabriefdescriptionofeachofthesixmodels.TableA5intheappendixprovidesfurtherdetailsoneachmodel.

TheDICE(DynamicIntegratedmodelofClimateandtheEconomy)wasfirstdevelopedaround1990andhasgonethroughseveralextensionsandrevisions.ThelatestpublishedversionisNordhaus(2014)withadetaileddescriptioninNordhausandSztorc(2014).TheDICEmodelisagloballyaggregatedmodelthatviewstheeconomicsofclimatechangefromtheperspectiveofneoclassicaleconomicgrowththeory.Inthisapproach,economiesmakeinvestmentsincapitalandinemissions

Page 11: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      10 

reductions,reducingconsumptiontoday,inordertolowerclimatedamagesandincreaseconsumptioninthefuture.Thespecialfeatureofthemodelistheinclusionofallmajorelementsinahighlyaggregatedfashion.Themodelcontainsabout25dynamicequationsandidentities,includingthoseforglobaloutput,CO2emissionsandconcentrations,globalmeantemperature,anddamages.Theversionforthisprojectrunsfor60five‐yearperiods.ItcanberunineitheranExcelversionorinthepreferredGAMSversion.TheversionusedforthisstudydatesfromDecember2013andaddsloopstocalculatetheoutcomesfordifferentuncertainparameters.TherunswereimplementedbyWilliamNordhausandPaulSztorc.

TheFUNDmodel(ClimateFrameworkforUncertainty,Negotiation,andDistribution)wasdevelopedprimarilytoassesstheimpactsofclimatepoliciesinanintegratedframework.Itisarecursivemodelthattakesexogenousscenariosofmajoreconomicvariablesasinputsandthenperturbsthesewithestimatesofthecostofclimatepolicyandtheimpactsofclimatechange.Themodelhas16regionsandcontainsexplicitrepresentationoffivegreenhousegases.Climatechangeimpactsaremonetizedandincludeagriculture,forestry,sea‐levelrise,healthimpacts,energyconsumption,waterresources,unmanagedecosystems,andstormimpacts.Eachimpactsectorhasadifferentfunctionalformandiscalculatedseparatelyforeachofthe16regions.Themodelrunsfrom1950to3000intimestepsof1year.Thesourcecode,data,andatechnicaldescriptionofthemodelarepublic(www.fund‐model.org),andthemodelhasbeenusedbyothermodelingteams(e.g.,Reveszetal.(2014)).FUNDwasoriginallycreatedbyRichardTol(Tol,1997)andisnowjointlydevelopedbyDavidAnthoffandRichardTol.TherunswereimplementedbyDavidAnthoff.

TheGCAM(GlobalChangeAssessmentModel)isaglobalintegratedassessmentmodelofenergy,economy,land‐use,andclimate.GCAMisalong‐termglobalmodelbasedontheEdmondsandReillymodel(EdmondsandReilly1983a,b,c).GCAMintegratesrepresentationsoftheglobaleconomy,energysystems,agricultureandlanduse,withrepresentationsofterrestrialandoceancarboncycles,andasuiteofcoupledgas‐cycleandclimatemodels.TheclimateandphysicalatmosphereinGCAMisbasedontheModelfortheAssessmentofGreenhouse‐GasInducedClimateChange(MAGICC)(Meinshausenetal.2011).TheglobaleconomyinGCAMisrepresentedin14geopoliticalregions,explicitlylinkedthroughinternationaltradeinenergycommodities,agriculturalandforestproducts,andothergoodssuchasemissionspermits.Thescaleofeconomicactivityineachregionisdrivenbypopulationsize,age,andgenderaswellaslaborproductivity.Themodelisdynamic‐recursivelysolvedforasetofmarket‐clearingequilibriumpricesinallenergyandagriculturalgoodmarketsevery5yearsover2005‐2095.Thefull

Page 12: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      11 

documentationofthemodelisavailableataGCAMwiki(Calvinandetal.2011).GCAMisopen‐source,butisprimarilydevelopedandmaintainedbytheJointGlobalChangeResearchInstitute.ThemodelrunswereperformedbyHaewonMcJeon.

TheMERGEmodel(ModelforEvaluatingRegionalandGlobalEffectsofgreenhousegasreductionpolicies)isanintegratedassessmentmodeldescribingglobalenergy‐economy‐climateinteractionswithregionaldetail.ItwasintroducedbyManneetal.(1999)andhasbeencontinuallydevelopedsince;arecentlypublisheddescriptionisinBlanfordetal.(2014).MERGEisformulatedasamulti‐regiondynamicgeneralequilibriummodelwithaprocessmodeloftheenergysystemandareduced‐formrepresentationoftheclimate.ItissolvedinGAMSviasequentialjointnon‐linearoptimizationwithNegishiweightstobalanceinter‐regionaltradeflows.Theeconomyisrepresentedasatop‐downRamseymodelinwhichelectricandnon‐electricenergyinputsaretradedoffagainstcapitalandlaborandproductionisallocatedbetweenconsumptionandinvestment.Theenergysystemincludesexplicittechnologiesforelectricitygenerationandnon‐electricenergysupply,witharesourceextractionmodelforfossilfuelsanduranium.Theclimatemodelincludesafive‐boxcarboncycleandtracksallmajornon‐CO2greenhousegasesandnon‐CO2forcingagentsexplicitly.Temperatureevolvesasatwo‐boxlagprocess,whereuncertaintyaboutclimatesensitivityisconsideredjointlywithuncertaintyabouttheresponsetimeandaerosolforcing.Theversionusedforstudyincludes10modelregionsandrunsthrough2100,withclimatevariablesprojectedforanadditionalcentury.TherunswereimplementedbyGeoffreyBlanford.

TheMITIGSM(IntegratedGlobalSystemsModel)wasdevelopedintheearly1990’sandhasbeencontinuallyupdated.Itincludesageneralcirculationmodeloftheatmosphereanditsinteractionswithoceans,atmosphericchemistry,terrestrialvegetation,andthelandsurface.Itseconomiccomponentrepresentstheeconomyandanthropogenicemissions.ThefullIGSMisdescribedinSokolovetal.(2009)andWebsteretal.(2012).TheversionoftheeconomiccomponentappliedhereisdescribedinChenetal.(2015).Theearthsystemcomponentisasimplifiedgeneralcirculationmodelresolvedin46latitudebandsand11verticallayersintheatmospherewithan11layeroceanmodel.Thelandsystemincludes17vegetationtypes.Theeconomiccomponentisamulti‐sector,multi‐regionappliedgeneralequilibriummodel,anempiricalimplementationconsistentwithneo‐classicaleconomictheory.Forthecurrentproject,themodeloperatesinarecursivefashioninwhichtheeconomydrivestheearthsystemmodelbutwithoutfeedbacksofclimateimpactsontheeconomicsystem.Theeconomiccomponentissolvedfor5yeartimestepsinGAMS‐MPSGEandforthisexercisewasrunthrough2100.The

Page 13: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      12 

earthsystemcomponentsolveson10minutetimesteps(thevegetationmodelonmonthlytimesteps).ThesimulationsforthisexercisewereconductedbyY.‐H.HenryChen,AndreiSokolov,andJohnReilly.

TheWITCH(WorldInducedTechnicalChangeHybrid)modelwasdevelopedin2006(Bosettietal.2006)andhasbeendevelopedandextendedsincethen.ThelatestversionisfullydescribedinBosettietal.(2014).Themodeldividestheworldinto13majorregions.TheeconomyofeachregionisdescribedbyaRamsey‐typeneoclassicaloptimalgrowthmodel,whereforward‐lookingcentralplannersmaximizethepresentdiscountedvalueofutilityofeachregion.Theseoptimizationstakeaccountofotherregions'intertemporalstrategies.Theoptimalinvestmentstrategyincludesadetailedappraisalofenergysectorinvestmentsinpower‐generationtechnologiesandinnovation,andthedirectconsumptionoffuels,aswellasabatementofothergasesandland‐useemissions.Greenhouse‐gasemissionsandconcentrationsarethenusedasinputsinaclimatemodelofreducedcomplexity(Meinshausenetal.2011).Theversionusedforthisprojectrunsfor30five‐yearperiodsandcontains35statevariablesforeachofthe13regions,runningontheGAMSplatform.TherunswereimplementedbyValentinaBosettiandGiacomoMarangoni.

IV. Choiceofuncertainparametersandgriddesign

A. Choiceofuncertainparameters

Oneofthekeydecisionsinthisstudywastoselecttheuncertainparameters.Thecriteriaforselectionwere(atleastafterthefact)clear.First,eachparametermustbeimportantforinfluencinguncertainty.Second,parametersshouldbeonesthatcanbevariedineachofthemodelswithoutexcessiveburdenandwithoutviolatingthespiritofthemodelstructure.Third,theparametersshouldbeonesthatcanberepresentedbyaprobabilitydistribution,eitheronthebasisofpriorresearchorfeasiblewithinthescopeofthisproject. Ataninitialmeeting,anexperimentwasundertakeninwhicheachofthemodelswasgivensixuncertainparametersorshockstotestforfeasibility.Attheendofthisinitialtestexperiment,twoofthemodelingteamsdecidednottoparticipatebecausetheinitialparameterscouldnotbeeasilyincorporatedinthemodeldesignorbecauseoftimeconstraints.Threeoftheparametersfulfilledtheabove‐mentionedcriteria,andtheseweretheonesthatwereincorporatedinthefinalsetofexperiments. Thefinallistofuncertainparameterswerethefollowing:(1)Therateofgrowthofproductivity,orpercapitaoutput;(2)therateofgrowthofpopulation;

Page 14: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      13 

and(3)theequilibriumclimatesensitivity(equilibriumchangeinglobalmeansurfacetemperaturefromadoublingofatmosphericCO2concentrations).

Additionally,itwasdecidedtodotwoalternativepolicyscenarios.Onewasa“Base”runinwhichnoclimatepolicieswereintroduced;andthesecond,labelled“CarbonTax”(andsometimes“Ampere”)introducedarapidlyrisingglobalcarbontax.2Arunbasedoncarbonpriceswasselected(insteadofquantitativelimits)becausemanymodelshadundertakensimilarrunsinothermodelcomparisonprojects,sotheywererelativelyeasytoimplement.

Severalotherparameterswerecarefullyconsideredbutrejected.Apulseofemissionswasrejectedbecauseithadessentiallynoimpact.Aglobalrecessionwasrejectedforthesamereason.Itwashopedtoadduncertaintiesfortechnology(suchasthoseconcerningtherateofdecarbonization,thecostofbackstoptechnologies,orthecostofadvancedcarbon‐freetechnologies),butitprovedimpossibletofindonethatwasbothsufficientlycomprehensiveandcouldbeincorporatedinallthemodels.Uncertaintyaboutclimatedamageswasexcludedbecausehalfthemodelsdidnotcontaindamages.Afinalpossibilitywastoanalyzepolicyrunsthathadquantitativelimitsratherthancarbonprices.Forexample,somemodelshadparticipatedinmodelcomparisonsinwhichradiativeforcingswerelimited.Thisapproachwasrejectedbecausethecarbontaxprovedeasiertodefineandimplement.Additionally,earlierexperimentsindicatedthatquantitativelimitswereoftenfoundinfeasible,andthiswouldcloudtheinterpretationoftheresults.3

                                                            2TheCarbonTaxrunwasselectedfromtheAMPEREmodelcomparisonstoreducetheburdenonmanyofthemodelersandsothattheresultsfromthisstudycanbecomparedtothosefromtheAMPEREinter‐modelcomparisonstudy(Kriegleretal.2015).ThespecificscenariochosenisknownintheAMPEREstudyas"CarbonTax$12.50‐increasing.”ThefullAMPEREscenariodatabasecanbefoundonlineathttps://secure.iiasa.ac.at/web‐apps/ene/AMPEREDB.3SeeparticularlytheresultsforEnergyModelingForum22reportedinaspecialissueinEnergyEconomics(e.g.,seeClarkeandWeyant(2009)).Manymodelsfoundthattightconstraintswereinfeasiblefortheirbaseruns.Aquantitativelimitwouldalmostsurelyhavefoundthatlargenumbersofthe125scenarioswereinfeasibleforanytightlimitontemperatureorradiativeforcings.

Page 15: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      14 

B. Descriptionofuncertainparameters

Wenextdescribethethreeuncertainparameterscontainedinthestudy.Itturnedoutthatharmonizingtheseacrossmodelswasmorecomplicatedthanwasoriginallyanticipated,asdescribedbelow.

(1) Therateofgrowthofpopulation.Uncertaintyabouttherateofgrowthofpopulationwasstraightforward.Forglobalmodels,therewasnoambiguityabouttheadjustment.Theuncertaintywasspecifiedasplusorminusauniformpercentagegrowthrateeachyearovertheperiod2010‐2100.Forregionalmodels,theadjustmentwaslefttothemodeler.Mostmodelsassumedauniformchangeinthegrowthrateineachregion.

(2)Therateofgrowthofproductivity,orpercapitaoutput.Theoriginaldesignhadbeentoincludeavariablethatrepresentedtheuncertaintyaboutoveralltechnologicalchangeintheglobaleconomy(oraveragedacrossregions).Theresultsoftheinitialexperimentindicatedthatthespecificationsoftechnologicalchangedifferedgreatlyacrossmodels,anditwasinfeasibletospecifyacomparabletechnologicalvariablethatcouldapplyforallmodels.Forexample,somemodelshadasingleproductionfunction,whileothershadmultiplesectors.

Ratherthanattempttofindacomparableparameter,itwasdecidedtoharmonizeontheuncertaintyofglobaloutputpercapitagrowthfrom2010to2100.Eachmodelerwasaskedtointroduceagridofchangesinitsmodel‐specifictechnologicalparameterthatwouldleadtoachangeinpercapitaoutputofplusorminusagivenamount(tobedescribedinthenextsection).ThemodelersweretheninstructedtoadjustthatchangesothattherangeofgrowthratesinpercapitaGDPfrom2010to2100inthecalibrationexercisewouldbeequaltothedesiredrange.

(3)Theclimatesensitivity.Modelinguncertaintyaboutclimatesensitivityprovedtobeoneofthemostdifficultissuesofharmonizationacrossthedifferentmodels.WhileallmodelshavemodulestotracethroughthetemperatureimplicationsofchangingconcentrationsofGHGs,theydifferindetailandspecification.Themajorproblemwasthatadjustingtheequilibriumclimatesensitivitygenerallyrequiredadjustingotherparametersinthemodelthatdeterminethespeedofadjustmenttotheequilibrium;theadjustmentspeedissometimesrepresentedbythetransientclimatesensitivity.Thisproblemwasidentifiedlateintheprocess,afterthesecond‐roundrunshadbeencompleted,andmodelerswereaskedtomaketheadjustmentsthattheythoughtappropriate.Somemodelsmadeadjustmentsinparameterstoreflectdifferencesinlargeclimate

Page 16: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      15 

models.Othersconstrainedtheparameterssothatthemodelwouldfitthehistoricaltemperaturerecord.Thedifferingapproachesledtodifferingstructuralresponsestotheclimatesensitivityuncertainty,aswillbeseenbelow.

C. Griddesign

Inthefirsttrack,themodelingteamsprovideasmallnumberofcalibrationrunsthatincludeafullsetofoutputsforathree‐dimensionalgridofvaluesoftheuncertainparameters.Foreachoftheuncertainparameters,weselectedfivevaluescenteredonthemodel’sbaselinevalues.Therefore,for3uncertainparameters,therewere125runseachfortheBaseandtheCarbonTaxpolicyscenarios.

Onthebasisofthesecalibrationruns,thenextstepinvolvedestimatingsurface‐responsefunctions(SRFs)inwhichthemodeloutcomesareestimatedasfunctionsoftheuncertainparameters.ThehopewasthatiftheSRFscouldapproximatethemodelsaccurately,thentheycouldbeusedtosimulatetheprobabilitydistributionsoftheoutcomevariablesaccurately.AninitialtestsuggestedthattheSRFswerewellapproximatedbyquadraticfunctions.Wethereforesettherangeofthegridsothatitwouldspanmostofthespacethatwouldbecoveredbythedistributionoftheuncertainparameters,yetnotgosofarastopushthemodelsintopartsoftheparameterspacewheretheresultswouldbeunreliable.

Asanexample,takethegridforpopulationgrowth.Thecentralcaseisthemodel’sbasecaseforpopulationgrowth.Eachmodelthenusesfouradditionalassumptionsforthegridforpopulationgrowth:thebasecaseplusandminus0.5%peryearandplusandminus1.0%peryear.Thesewouldcovertheperiod2010to2100.Forexample,assumethatthemodelhadabasecasewithaconstantpopulationgrowthrateof0.7%peryearfrom2010to2100.Thenthefivegridpointsforpopulationgrowthwouldbeconstantgrowthratesof‐0.3%,0.2%,0.7%,1.2%,and1.7%peryear.Populationafter2100wouldhavethesamegrowthrateasinthemodeler’sbasecase.Theseassumptionsmeanthatpopulationin2100wouldbe(0.99)90,(0.995)90,1,(1.005)90,and(1.01)90timesthebasecasepopulationfor2100.

Forproductivitygrowth,thegridwassimilarlyconstructed,butadjustedsothatthegrowthinpercapitaoutputfor2100added‐1%,‐0.5%,0%,0.5%,and1%tothegrowthrateineachyearfortheperiod2010‐2100.

Fortheclimatesensitivity,themodelersweretoaddtothebaselineequilibriumclimatesensitivity‐3°C,‐1.5°C,0°C,1.5°C,and3°C.Itturnedoutthatthelowerendofthisrangecauseddifficultiesforsomemodels,andforthesethe

Page 17: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      16 

modelersreportedresultsonlyforthefourhigherpointsinthegridorsubstitutedanotherlowvalue.

Inprinciple,then,fortrackIeachmodelreported5x5x5modelresultsforboththeBasecaseandtheCarbonTaxpolicyassumptions.

V. Approachfordevelopingprobabilitydensityfunctions

A. Generalconsiderations

Thethreeuncertainparametershavebeenthesubjectofuncertaintyanalysisinearlierstudies.Foreachparameter,wereviewedearlierstudiestodeterminewhethertherewasanexistingsetofmethodsordistributionsthatcouldbedrawnupon.Thedesirablefeaturesofthedistributionsisthattheyshouldreflectbestpractice,thattheyshouldbeacceptabletothemodelinggroups,andthattheybereplicable.Itturnedoutthatthethreeparametersusedthreedifferentapproaches,aswillbedescribedbelow.

B. Population

Populationgrowthhasbeenthesubjectofprojectionsformanyyears,andnumerousgroupshaveundertakenuncertaintyanalysesforbothcountriesandatthegloballevel.Ourreviewfoundonlyoneresearchgroupthathadmadelong‐termglobalprojectionsofuncertaintyforseveralyears,whichwasthepopulationgroupattheInternationalInstituteforAppliedSystemsAnalysis(IIASA)inAustria.(Foradiscussion,seeO'Neilletal.(2001)).TheIIASAdemographygroupisunderthedirectionofdemographerWolfgangLutz.

TheIIASAstochasticprojectionsweredevelopedoveraperiodofmorethanadecadeandarewidelyusedbydemographers.Themethodologyissummarizedasfollows:“IIASA’sprojections…arebasedexplicitlyontheresultsofdiscussionsofagroupofexpertsonfertility,mortality,andmigrationthatisconvenedforthepurposeofproducingscenariosforthesevitalrates”(Seehttp://www.demographic‐research.org/volumes/vol4/8/4‐8.pdf)Thelatestprojectionsfrom2013(Lutzetal.2014)areanupdatetothepreviousprojectionsfrom2007and2001(Lutzetal.2008),2001).Themethodologyisdescribedasfollows:

Theforecastsarecarriedoutfor13worldregions.Theforecastspresentedherearenotalternativescenariosorvariants,butthedistributionoftheresultsof2,000differentcohortcomponentprojections.Forthesestochasticsimulationsthefertility,mortalityandmigrationpathsunderlyingtheindividualprojection

Page 18: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      17 

runswerederivedrandomlyfromthedescribeduncertaintydistributionforfertility,mortalityandmigrationinthedifferentworldregions.(Lutz,Sanderson,andScherbov2008)

Thebackgroundmethodsaredescribedasfollowsonpage219ofO'Neilletal.(2001):

TheIIASAmethodologyisbasedonaskingagroupofinteractingexpertstogivealikelyrangeforfuturevitalrates,where"likely"isdefinedtobeaconfidenceintervalofroughly90%(Lutz1996,Lutzetal.1998).Combiningsubjectiveprobabilitydistributionsfromanumberofexpertsguardsagainstindividualbias,andIIASAdemographersarguethatastrengthofthemethodisthatitmaybepossibletocapturestructuralchangeandunexpectedeventsthatotherapproachesmightmiss.Inaddition,inareaswheredataonhistoricaltrendsaresparse,theremaybenobetteralternativetoproducingprobabilisticprojections.

Forthisstudy,weareaimingforaparsimoniousparameterizationofpopulationuncertainty.Thisisnecessarybecauseofthelargedifferencesinmodelstructure.Wethereforeselectedtheuncertaintyaboutglobalpopulationgrowthfortheperiod2010‐2100asthesingleparameterofinterest.Wefittedthegrowth‐ratequantilesfromtheIIASAprojectionstoseveraldistributions,withnormal,log‐normal,andgammabeingthemostsatisfactory.Thenormaldistributionperformedbetterthananyoftheothersonfiveofthesixquantitativetestsoffitfordistributions.Basedontheseresults,wethereforedecidedtorecommendthenormaldistributionforthepdfofpopulationgrowthovertheperiod.

Inaddition,wedidseveralalternativeteststodeterminewhethertheprojectionswereconsistentwithothermethodologies.Onesetoftestsexaminestheprojectionerrorsthatwouldhavebeengeneratedusinghistoricaldata.Asecondtestlooksatthestandarddeviationof100‐yeargrowthratesofpopulationforthelastmillennium.AthirdtestexaminesprojectionsfromareportoftheNationalResearchCouncilthatestimatedtheforecasterrorsforglobalpopulationovera50‐yearhorizon(seeNRC(2000),AppendixF,p.344).Whiletheseallgaveslightlydifferentuncertaintyranges,theyweresimilartotheuncertaintiesestimatedintheIIASAstudy.

Onthebasisofthisreview,wedecidedtouseanormaldistributionforthegrowthrateofpopulationbasedontheIIASAstudythathasastandarddeviationoftheaverageannualgrowthrateof0.22percentagepointsperyearovertheperiod

Page 19: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      18 

2010‐2100.Moredetailswithabackgroundmemorandumontheresultsareavailablefromtheauthors.

C. ClimateSensitivity

Animportantparameterinclimatescienceistheequilibriumorlong‐runresponseintheglobalmeansurfacetemperaturetoadoublingofatmosphericcarbondioxide.Intheclimatesciencecommunity,thisiscalledtheequilibriumclimatesensitivity.Withreferencetoclimatemodels,thisiscalculatedastheincreaseinaveragesurfacetemperaturewithadoubledCO2concentrationrelativetoapathwiththepre‐industrialCO2concentration.ThisparameteralsoplaysakeyroleinthegeophysicalcomponentsintheIAMsusedinthisstudy.Intheremainderofthispaper,wewillfollowtheconventioninthegeosciencesandcallittheequilibriumclimatesensitivity(ECS).

GiventheimportanceoftheECSinclimatescience,thereisanextensiveliteratureestimatingprobabilitydensityfunctions.Thesepdfsaregenerallybasedonclimatemodels,theinstrumentalrecordsoverthelastcenturyorso,paleoclimaticdatasuchasestimatedtemperatureandradiativeforcingsoverice‐ageintervals,andtheresultsofvolcaniceruptions.Muchoftheliteratureestimatesaprobabilitydensityfunctionusingasinglelineofevidence,butafewpaperssynthesizedifferentstudiesordifferentkindsofevidence.

Wefocusonthestudiesdrawinguponmultiplelinesofevidence.TheIPCCFifthAssessmentreport(AR5)reviewedtheliteraturequantifyinguncertaintyintheECSandhighlightedfiverecentpapersusingmultiplelinesofevidence(IPCC2014).EachpaperusedaBayesianapproachtoupdateapriordistributionbasedonpreviousevidence(thepriorevidenceusuallydrawnfrominstrumentalrecordsoraclimatemodel)tocalculatetheposteriorprobabilitydensityfunction.Sinceeachdistributionwasdevelopedusingmultiplelinesofevidence,andinsomecasesthesameevidence,itwouldbeinconsistenttoassumethattheywereindependentandsimplytocombinethem.Further,sincewecouldnotreliablyestimatethedegreeofdependenceofthedifferentstudies,wecouldnotsynthesizethembytakingintoaccountthedependence.WethereforechosetheprobabilitydensityfunctionfromasinglestudyandperformedrobustnesscheckstousingtheresultsfromalternativestudiescitedintheIPCCAR5.

ThechosenstudyforourprimaryestimatesisOlsenetal.(2012).ThisstudyisrepresentativeoftheliteratureinusingaBayesianapproach,withapriorbasedonpreviousstudiesandalikelihoodbasedonobservationalormodeleddata,suchasglobalaveragesurfacetemperaturesorglobaltotalheatcontent.ThepriorinOlsenetal.(2012)isprimarilybasedonKnuttiandHegerl(2008).Thatprioristhen

Page 20: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      19 

combinedwithoutputvariablesfromtheUniversityofVictoriaESCMclimatemodel(Weaveretal.2001)todeterminethefinalorposteriordistribution.

Olsenetal.(2012)waschosenforthefollowingreasons.First,itwasrecommendedtousinpersonalcommunicationswithseveralclimatescientists.Second,itwasrepresentativeoftheotherfourstudiesweexaminedandfallsintothemiddlerangeofthedifferentestimates.4Third,sensitivityanalysesoftheeffectonaggregateuncertaintyofchangingthestandarddeviationoftheOlsenetal.(2012)resultsfoundthatthesensitivitywassmall(seethesectionbelowonsensitivityanalyses).Appendix1providesmoredetailsonOlsenetal.(2012)andalsopresentsafigurecomparingthisstudytotheotherstudiesintheIPCCAR5.

NotethattheUSgovernmentusedaversionoftheRoeandBakerdistributioncalibratedtothreeconstraintsfromtheIPCCforitsuncertaintyestimates(IAWG2010).Specifically,theIAWGReportmodifiedtheoriginalRoeandBakerdistributiontoassumethatthemedianvalueis3.0°C,theprobabilityofbeingbetween2and4.5°Cistwo‐thirds,andthereisnomassbelowzeroorabove10°C.ThemodifiedRoeandBakerdistributionhasahighermeanECSthananyofthemodels(3.5°C)andamuchhigherdispersion(1.6°Cascomparedto0.84°CfromOlsenetal.2012).

TheestimatedpdfforOlsenetal.(2012)wasderivedasfollows.Wefirstobtainedthepdffromtheauthors.Thispdfwasprovidedasasetofequilibriumtemperaturevaluesandcorrespondingprobabilities.Wethenexploredfamiliesofdistributionsthatbestapproximatedthenumericalpdfprovided.Wefoundthatalog‐normalpdffitstheposteriordistributionsextremelywell.

Tofindtheparametersofthefittedlog‐normalpdf,weminimizethesquareddifferencebetweentheposteriordensityfunctionfromOlsenetal.andthelog‐normalpdfoverthesupportofthedistribution(theL2orEuclidiannorm).Inotherwords,weminimizethesumofthesquareoftheverticaldifferencesbetweentheposteriorpdfandalog‐normalpdfoverallgridpointsvaluesintheOlsenetal.(2012)distribution.5Figure1showstheOlsenetal.(2012)pdf,alongwiththefittedlog‐normaldensityfunction.Thefitisextremelyclose,withthelog‐normaldistributionalwayswithin0.14%oftheOlsenetal.(2012)pdfforanygridpointvalue.

                                                            4Intests,wefoundthattheOlsenetal.(2012)distributionissimilartoasimplemixturedistributionofallfivedistributions.Wecalculatethismixturedistributionbytakingtheaverageprobabilityoveralldistributionsateachtemperatureincrease.5MorepreciselyweminimizeovertherangeoftheOlsenetal.distribution,[1.509,7.4876]°C,withagridpointspacingof0.1508°C.

Page 21: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      20 

D. TotalFactorProductivity

Uncertaintyinthegrowthofproductivity(oroutputpercapita)isknowntobeacriticalparameterindeterminingallelementsofclimatechange,fromemissionstotemperaturechangetodamages(Nordhaus2008).ClimatemodelsgenerallydrawtheirestimatesofemissionstrajectoriesfrombackgroundmodelsofeconomicgrowthsuchasscenariospreparedfortheIPCCorstudiesoftheEnergyModelingForum.Nomajorstudies,however,relyonstatistically‐basedestimatesofemissionsandeconomicgrowth.

Forecastsoflong‐runproductivitygrowthinvolveactivedebatesonissuessuchastheroleofnewtechnologiesandinventions(BrynjolfssonandMcAfee2012,Gordon2012),potentialincreasesintheresearchintensityandeducationalattainmentinemergingeconomies(FernaldandJones2014,Freeman2010),andinstitutionalreformandpoliticalstability(Acemogluetal.2005).Whiletheempiricalliteratureoneconomicgrowthhasprovidedevidenceinsupportofvariousunderlyingmodels,noexistingstudycontainssufficientinformationtoderiveaprobabilitydistributionforlong‐rungrowthrates.

 

 

Figure1.TheOlsenetal.(2012)probabilitydensityfunctionalongwiththefittedlog‐normaldistributionusedinouranalysis. 

Page 22: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      21 

Thehistoricalrecordprovidesausefulbackgroundforestimatingfuturetrends.However,itisclearfromboththeoreticalandempiricalperspectivesthattheprocessesdrivingproductivitygrowtharenon‐stationary.Forexample,estimatesofthegrowthofglobaloutputpercapitaforthe18th,19th,and20thcenturyare0.6,1.9,and3.7percentperyear(DeLong2015inhttp://holtz.org/Library/Social%20Science/Economics/Estimating%20World%20GDP%20by%20DeLong/Estimating%20World%20GDP.htm).Totheextentthatexpertsoneconomicgrowthpossessvalidinsightsaboutthelikelihoodandpossibledeterminantsoflong‐rungrowthpatterns,theninformationdrawnfromexpertscanaddvaluetoforecastsbasedpurelyonhistoricalobservationsordrawnfromasinglemodel.Combiningexpertestimateshasbeenshowntoreduceerrorinshort‐runforecastsofeconomicgrowth(BatchelorandDua1995).However,therearefewexpertstudiesonlong‐rungrowth(seeAppendix2fordiscussion)and,toourknowledge,therehasbeennosystematicanddetailedpublishedstudyofuncertaintyinlong‐runfuturegrowthrates.

Todevelopestimatesofuncertainties,theprojectteam,ledbyPeterChristensen,undertookasurveyofexpertsoneconomicgrowthtodetermineboththecentraltendencyandtheuncertaintyaboutlong‐rungrowthtrends.Oursurveyutilizedinformationdrawnfromapanelofexpertstocharacterizeuncertaintyinestimatesofglobaloutputfortheperiods2010‐2050and2010‐2100.WedefinedgrowthastheaverageannualrateofrealpercapitaGDP,measuredinpurchasingpowerparity(PPP)terms.Weaskedexpertstoprovideestimatesoftheaverageannualgrowthratesat10th,25th,50th,75th,90thpercentiles.

Beginninginthesummerof2014,wesentoutsurveystoapanelof25economicgrowthexperts.AsofJune2015,wecollected11completeresultswithfulluncertaintyanalysisfortheperiod2010‐2100.AsummaryoftheprocedureisprovidedinAppendix2,andacompletereportwillbepreparedseparately.

Therearemanydifferentapproachestocombiningexpertforecasts(Armstrong2001)andaggregatingprobabilitydistributions(ClemenandWinkler1999).Weassumethatexpertshaveinformationaboutthelikelydistributionoflong‐rungrowthrates.Theirinformationsetsaredefinedbyestimatesfor5differentpercentiles.Webeginbyassumingthattheestimatesareindependentacrossexpertsandthenexaminedthedistributionsthatbestfitthepercentilesforeachexpertandforthecombinedestimates(averageofpercentiles)acrossexperts.

WefounditusefulforthisprojecttocharacterizetheexpertpdfswithcommonlyuseddistributionssothattheMonteCarloestimatescouldbeeasilyimplemented.Intestingthedistributionsforeachexpert,wefoundthatmostexperts’estimatescan

Page 23: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      22 

becloselyfittedbyanormaldistribution;similarly,thecombineddistributioniswellfittedbyanormaldistribution.DetailsareprovidedinAppendix2.

Theresultingcombinednormaldistributionhasameangrowthrateof2.29%peryearandastandarddeviationofthegrowthrateof1.15%peryearovertheperiod2010‐2100.(ThemeangrowthrateofpercapitaGDPinthebaserunsofthesixmodelsisslightlylowerat1.9%peryearoverthisperiod.)Wetestdifferentapproachesforcombiningtheexpertresponsesandfindlittlesensitivitytothechoiceofaggregationmethod.Figure2showsthefittedindividualandcombinednormalpdfs(explainedinAppendix2).IntheMonteCarloestimatesbelow,wechoseastandarddeviationofthegrowthrateofpercapitaoutputof1.12%peryear(basedonthefirst11responses).Thisvalueisusedinthisdraft,butwillbeupdatedwiththeadditionoffurtherresponses.

 

Figure2.Individualandcombinedpdfsforannualgrowthratesofoutputpercapita,2010–2100(averageannualpercentperyear)Forthemethods,seeAppendix2.

 

Page 24: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      23 

Itisusefultocomparethesurveyresultswithhistoricaldata.Ifwetakethelong‐termestimatesfromMaddison(2003),the100‐yearvariabilityofgrowthoverthetencenturiesfrom1000to2000was1.5%peryear,witharangeof‐0.1%to3.7%peryear.Thevariabilityinthesecentury‐stepdataishigherthantheexperts’estimateof1.15%peryear.

Globalgrowthratesbasedondetailednationaldataareavailablesince1900.Thestandarddeviationofannualgrowthratesoverthisperiodwas2.9%peryear,whilethestandarddeviationof25‐yeargrowthrateswas1.2or1.4%peryeardependinguponthesource.Thevariabilityofgrowthinrecentyearswaslowerthanfortheentireperiodsince1900.Thestandarddeviationintheannualgrowthrateduringtheperiod1975‐2000was1.1%peryear.Wecannoteasilytranslatehistoricalvariabilitiesintocentury‐longvariabilitieswithoutassumingaspecificstochasticstructureofgrowthrates.

VI. ResultsofModelingStudies

A. Modelresultsandlatticediagrams

Webeginbyprovidingresultsonthecalibrationrunsandthesurfaceresponsefunctions.Foreachmodel,thereisavoluminoussetofinputsandoutputvariablesfrom2010to2100.Thefullset(consistingof46,150x22elements)clearlycannotbefullypresented.Werestrictourfocusheretosomeofthemostimportantresults,andconsignfurtherresultstoAppendix3,withthefullresultsavailableonlineattimeofpublication.

Tohelpvisualizetheresults,wehavedevelopedlatticediagramstoshowhowtheresultsvaryacrossuncertainvariablesandmodels.Figure3isalatticediagramfortheincreaseinglobalmeansurfacetemperaturein2100.Withineachoftheninepanels,they‐axisistheglobalmeansurfacetemperatureincreasein2100relativeto1900.Thex‐axisisthevalueoftheequilibriumtemperaturesensitivity.Goingacrosspanelsonthehorizontalaxis,thefirstcolumnusesthegridvalueofthefirstofthefivepopulationscenarios(whichisthelowestgrowthrate);themiddlecolumnshowstheresultsforthemodeler’sbaselinepopulation;andthethirdcolumnshowstheresultsforthepopulationassociatedwiththehighestpopulationgrid(orhighestgrowthrate).

Goingdownpanelsontheverticalaxis,thefirstrowusesthehighestgrowthrateforTFP(orthefifthTFPgridpoint);themiddlerowshowsTFPgrowthforthemodelers’baselines;andthebottomrowshowstheresultsfortheslowestgridpointforthegrowthrateofTFP.Notethatinallcases,themodelers’baselinevalues

Page 25: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      24 

generallydiffer,butthedifferencesinparametervaluesacrossrowsorcolumnsareidentical.

Tounderstandthislatticegraph,begininthecenterpanel.Thispanelusesthemodeler’sbaselinepopulationandTFPgrowth.Itindicateshowtemperaturein2100acrossmodelsvarieswiththeECS,withthedifferencesbeing1.5°CbetweentheECSgridpoints.AfirstobservationisthatthemodelsallassumethattheECSiscloseto3°Cinthebaseline.Next,isthattheresultingbaselinetemperatureincreasesfor2100arecloselybunchedbetween3.75and4.25°C.Allcurvesareupwardsloping,indicatingagreater2100temperaturechangeisassociatedwithahigherECS.

AstheECSvariesfromthebaselinevalues,themodeldifferencesaredistinct.ThesecanbeseenintheslopesofthedifferentmodelcurvesinthemiddlepanelofFigure3.Wewillseebelowthattheimpactofa1°CchangeinECSon2100temperaturevariesbyafactorof2½acrossmodels.Forexample,DICE,MERGE,andGCAMhaverelativelyresponsiveclimatemodules,whileIGSMandFUNDclimatemodulesaremuchlessresponsivetoECSdifferences.Thedifferenceacrossmodelsbecomeslargeraswemovefromthebottom‐lefttotheupperright‐handpanel,correspondingtoincreasingpopulationandTFPgrowthfrombottomlefttotopright.Thisresulthighlightskeydifferencesinboththeeconomicandclimatecomponentsofthedifferentmodels.

Page 26: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      25 

Anotherimportantrelationshiptoexamineishowdifferentmodelsreacttothecarbonprices.Figure4showsthepercentagereductioninCO2emissionsintheCarbonTaxscenariov.theBaserun.Thehorizontalaxisshowsthemagnitudeofthecarbontax.Onekeyfeatureofallmodelsisthatattainingzeroemissionswouldrequireextremelyhighcarbonprices.

 

 

 

 

Figure3.Latticediagramfor2100temperatureincreaseThislatticediagramshowsthedifferencesinmodelresultsfor2100globalmeansurfacetemperatureacrosspopulation,totalfactorproductivityandtemperaturesensitivityparameters.Thecentralboxusesthemodelers’baselineparametersandtheBasepolicy. 

Page 27: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      26 

Therearemanyotherresultsofthemodelingexercise.Appendix3containsfurtherlatticediagrams,includingthoseforpercapitaconsumption,emissions,anddamages,aswellasadditionaltablesofresults.However,theprimarypurposeofthepresentstudyistodeterminetheimpactofuncertainties,soweleavethemodelcomparisonsofmajoroutputsasideatthispoint.

B. Resultsoftheestimatesofthesurfaceresponsefunctions

RecallthattrackIprovidesthemodeloutcomes(suchasoutput,emissions,andtemperature)foreachgrid‐pointofa5x5x5x2gridofthevaluesoftheuncertainparametersandpolicies.Thenextstepintheanalysisistofitsurfaceresponsefunctions(SRFs)toeachofthemodeloutputs.TheseSRFsthenwillbeused,whencombinedwiththeTrackIIprobabilitydistributionsjustdiscussed,toprovideprobabilitydistributionsoftheoutcomevariablesforeachmodel.

 

  

Figure4.CarbontaxandemissionsreductionsbymodelModelsshowdifferingresponsetohighercarbonprices.Notethatthecarbonpricesareallassociatedwithgivendatesandarecommonforallmodels.Thepointstothefarleftarefor2010,whiletheonesatthefarrightarefor2100.Theseestimatesareforthemodelers’baselineparameters. 

0%

20%

40%

60%

80%

100%

120%

0 100 200 300 400 500

Percen

tage red

uction (A

mpere v base)

Carbon price ($/tCO2)

DICE FUND

GCAM IGSM

MERGE WITCH

Page 28: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      27 

WeundertookextensiveanalysisofdifferentapproachestoestimatingtheSRFs.Theinitialandeventuallypreferredapproachwasalinear‐quadratic‐interactions(LQI)specification.Thistookthefollowingform:

3 3

01 1 1

j

i i ij i ji j i

Y u u u

Inthisspecification, and i ju u aretheuncertainparameters.TheYarethe

outcomevariablesfordifferentmodelsanddifferentyears(e.g.,temperaturefortheFUNDmodelfor2100intheBaserunfordifferentvaluesofthe3uncertainparameters).Theparameters 0 , , and i i j aretheestimatesfromtheSRF

regressionequations.Wesuppressthesubscriptforthemodel,year,policy,andvariable.

Table1showsacomparisonoftheresultsfortemperatureandlogofoutputforthelinear(L)andLQIspecificationsforthesixmodels.AllspecificationsshowmarkedimprovementoftheequationfitintheLQIrelativetotheLversion.Lookingatthelogoutputspecification(thelastcolumninthebottomsetofnumbers),theresidualvarianceintheLQIspecificationisessentiallyzeroforallmodels.ForthetemperatureSRF,morethan99.5%ofthevarianceisexplainedbytheLQIspecification.Thestandarderrorsofequationsfor2100temperaturerangefrom0.05to0.18°CfordifferentmodelsintheLQIversion.

Page 29: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      28 

Theequationsarefitasdeviationsfromthecentralcase,socoefficientsarelinearizedatthecentralpoint,whichisthemodelers’baselinesetofparameters.LookingattheLQIcoefficientsfortemperature,notethattheeffectoftheECSon2100temperaturevariessubstantiallyamongthemodels.Atthehighend,thereisclosetoaunitcoefficient,whileatthelowendthevariationisabout0.4°Cper°Cin

 

  

 

Table1.LinearparametersinofSRFfortemperatureandlogoutputforlinear(L)andliner‐quadratic‐interactions(LQI)specifications

ThelinearparametersarethecoefficientsonthelineartermintheSRFregressions.Becausethedataaredecentered(removethemedians),thelineartermsinthehigher‐orderpolynomialsarethederivativesorlineartermsatthemedianvaluesoftheuncertainparameters.

 

Page 30: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      29 

ECSchange.ForTFP,theimpactsarerelativelysimilarexceptfortheWITCHmodel,whichismuchlower.ThisislikelyduetoimplementationoftheTFPchangesasinput‐neutraltechnicalchange(ratherthanchangesinlaborproductivity,asinseveralothermodels).Forpopulation,theLQIcoefficientsvarybyafactorofthree.

Forlogofoutput,severalmodelshavenofeedbackfromECStooutputandthusshowa0.000value.TheimpactofTFPisalmostuniformbydesign.Similarly,theimpactofpopulationonoutputisverysimilar.

WetestedsevendifferentspecificationsfortheSRF:Linear(L),Linearwithinteractions(LI),Linearquadratic(LQ),Linear,quadratic,linearinteractions(LQI)asshownabove,3rddegreepolynomialwithlinearinteractions(P3I),4thdegreepolynomialswithseconddegreeinteractions(P4I2),andfourthdegreepolynomialwithfourthdegreeinteractionsandpolynomialthree‐wayinteractions(P4I4S3).Forvirtuallyallmodelsandspecifications,theaccuracyincreasedsharplyasfarastheLQIspecification.However,asisshowninFigure5,verylittlefurtherimprovementwasfoundforthemoreexoticpolynomials.Inadditiontothepolynomialinterpolations,weinvestigatedseveralalternativetechniques,includingChebyshevpolynomialsandbasis‐splines.Wefoundnoimprovementfromtheseotherapproaches.

 

  

Figure5.Residualvarianceforallvariables,models,andspecificationsindicatesthatfornearlyallmodels,thereislittletobegainedaddingfurtherpolynomialtermsbeyondLQI. 

0.00

0.02

0.04

0.06

0.08

0.10L LQ LI LQI LQI++

1‐R2

All

Temp(2100)

Conc(2100)

Y(2100)

Page 31: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      30 

Insummary,wefoundthatthelinear‐quadratic‐interaction(LQI)specificationofthesurfaceresponsefunctionperformedextremelywellinfittingthedatainourtests.Thereasonisthatthemodels,whilehighlynon‐linearoverall,aregenerallyclosetoquadraticinthethreeuncertainparameters.WearethereforeconfidentthattheyareareliablebasisfortheMonteCarlosimulations.

C.ReliabilityoftheMUPprocedureswithextrapolation

OneissuethatarisesinestimatingthedistributionsofoutcomevariablesistheextenttowhichthecalibrationrunsintrackIadequatelycovertherangeofthepdfsfromtrackII.Forbothpopulationandtheequilibriumtemperaturesensitivity,thecalibrationrunscoveratleast99.9%oftherangeofthepdfs.However,whensettingthecalibrationrangeforTFPbasedonearlierinformalestimates,weunderestimatedthevariabilityofthefinalpdfs.Asaresult,thecalibrationrunsonlyextendasfarasthe83percentileattheupperend,requiringustoextrapolatebeyondtherangeofthecalibrationruns.

Sinceitwasnotpossibletorepeatthecalibrationrunswithanexpandedgrid,wetestedthereliabilityoftheextrapolationandthetwotrackapproachwithtwomodels.WefirstexaminedthereliabilityforTFPwiththebasecaseintheDICEmodel.ThiswasdonebymakingrunswithincrementsofTFPgrowthupto3estimatedstandarddeviations(i.e.,uptoaglobaloutputgrowthrateof6.1%peryearto2100).Theserunscover99.7%ofthedistribution.Wethenestimatedasurfaceresponsefunctionfor2100temperatureoverthesameintervalasforthecalibrationexercisesandextrapolatedoutsidetherange.TheresultsshowedhighreliabilityoftheestimatedSRFfortemperatureincreaseuptoabout2standarddeviationsabovethebaselineTFPgrowthrate.Beyondthat,theSRFtendedtooverestimatethe2100temperature.(SimilarresultswerefoundforCO2concentrationsandthedamage‐outputratiointheDICEmodel.)Thereasonfortheoverestimateisthatcarbonfuelsbecomeexhaustedathighgrowthrates,soraisingthegrowthratefurtherabovethealready‐highratehasarelativelysmalleffectsonemissions,concentrations,2100temperature,andthedamageratio.NotethatthisimpliesthatthefaruppertailofthetemperaturedistributionusingthecorrectedSRFwillshowathinnertailthantheonegeneratedbytheSRFestimatedoverthecalibrationruns.

WealsoperformedamorecomprehensivecomparisonoftheMUPprocedureswithafullMonteCarlousingtheFUNDmodel.Forthis,wetookthepdfsforthethreeuncertainvariablesandranaMonteCarloforthefullFUNDmodelwith1milliondraws.Wethencomparedthemeansandstandarddeviationsofdifferent

Page 32: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      31 

variablesforthetwoapproaches.WetestedfourdifferentspecificationsoftheSRFstodeterminewhetherthesewouldproducemarkedlydifferentoutcomes.TheresultsindicatedthattheMUPprocedureprovidedreliableestimatesofthemeansandstandarddeviationsofallvariablesthatwetestedexceptFUNDdamages.Exceptingdamages,forthepreferredLQIestimate,theabsoluteaverageerrorofthemeanfortheMUPprocedurerelativetotheFUNDMonteCarlowas0.3%,whiletheabsoluteaverageerrorforthestandarddeviationwas1.2%.Fordamages,theerrorswere7%and44%,respectively.Additionally,thepercentileestimatesfortheMUPprocedure(againexceptfordamages)wereaccurateuptothe90thpercentile.And,aswillbenotedbelow,theestimatesfortheparametersofthetailsofthedistributionswereaccurateforallvariablesexceptdamages.Anoteprovidingfurtherdetailsonthecomparisonsisavailablefromtheauthors.

VII. ResultsoftheMonteCarlosimulations

A. Distributionsformajorvariables

FortheMonteCarlosimulations,wetooktheSRFsforeachparameter/model/year/policyandmade1,000,000drawsfromeachpdfforthethreeuncertainparameters.Wethenexaminedtheresultingdistributions.Thissamplesizewaschosenbecausetheresultswerereliableatthatlevel.Thebootstrapstandarderrorsofthemeansandthestandarddeviationsweregenerallylessthan0.1%ofthemeanorstandarddeviation.Theexceptionwasfordamages,wherethebootstrapstandarderroroftheestimatedstandarddeviationswasabout0.2%ofthevaluefortheFUNDmodel.Wetreateachpdfindependently,butrecognizethattheremaybesomecorrelationbetweenrealizationsofpopulationandGDP.However,explorationsintothisrevealedthatitdidnotsubstantiallyinfluenceourfindings.

Table2showsstatisticsofthedistributionofthedrawsforeachofthemajoroutcomevariables,withaveragestakenacrossallsixmodels.WealsoshowtheestimatesforthelinearandLQIversionstoillustratethesensitivityoftheresultstotheSRFspecification.Thelastcolumnshowsthecoefficientofvariationforeachvariable.Notethattheseestimatesarewithin‐model(parametricuncertainty)resultsanddonotincludeacross‐modelvariability.Theresultshighlightthatemissions,economicoutput,anddamageshavethehighestcoefficientofvariation,underscoringthattheuncertaintyintheseoutputvariablesisgreaterthanforothervariables,suchasCO2concentrationsandtemperature.Thisistheresultofboththeunderlyingpdfsusedandthemodelsthemselves.

Page 33: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      32 

Table3showsthepercentiledistributionforallmajorvariablesforallmodelswithresultsforthebasecase.Thedetailedresultsbymodelsareprovidedintheappendix.Akeyresultisthedistributionoftemperatureincreasefor2100.Themedianincreaseacrossallmodelsis3.79°Cabove1900levels.The95thpercentileoftheincreaseis5.46°C.Giventhesizeoftheinterquartilerange,theseresultsdefinitelyindicatethattherearesubstantialuncertaintiesinallaspectsoffutureclimatechangeanditsimpactsinallthemodelsinvestigatedhere.

 

 

 

Table2.ResultsofMonteCarlosimulationsforaveragesofallmodelsThetableshowsthevaluesofallvariablesfor2100,exceptforthesocialcostofcarbon,whichisfor2020.DamagesandSCCareforthreemodels. 

 

 

Table3.Distributionofallmajorvariables,averageofsixmodelsThedateforallvariablesis2100exceptfortheSCC,whichis2020.DamagesandSCCareforthreemodels. 

Page 34: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      33 

Table4showsthedistributionforglobaltemperatureincreasein2100bymodel.Thetemperaturedistributionsofthesixmodelsareonthewholereasonablyclose.Themedianrangesfrom3.6to4.2°C,withIGSMbeingthelowestandMERGEbeingthehighest.Theinterquartilerangevariesfrom0.99°C(FUND)to1.39°C(DICE).The10‐90%rangesfrom1.91°C(WITCH)to2.65°C(DICE).Sincethevariabilityintherandomparametersisthesame,thedifferencesareduetomodelstructures. Oneinterestingfeatureisthetemperaturedistributioninthetails.The99thpercentilerangesfrom5.6(WITCH)to7.1°C(MERGE),whilethefartailofthe99.9thpercentilerangesfrom6.2(WITCH)to8.5°C(MERGE).

Table5showsthedistributionoftheSCCforthethreemodelsthatprovidetheseestimates.Thesearetheestimatesofthepresentvalueoftheflowoffuturemarginaldamagesofemissionsin2020.Twoofthemodels(WITCHandDICE)usesimilarquadraticdamagefunctionsandareroughlycomparableinthemiddleofthedistribution,buttherangeismuchsmallerinWITCH.6TheFUNDmodelhasmuchlowerdamages(duetoadifferentdamagefunction),andtheSCCdistributionisanorderofmagnitudelowerthantheothertwomodels.NotethatthecentralestimateoftheSCChereis$13.30pertonofCO2.ThisismuchlowerthanthepreferredestimateoftheUSgovernmentfor2020,whichis$46pertonin2011$witha3%annualdiscountrate.However,thebasecasediscountratesintheMUPrunsforthemodelsthatreportaverage4½%peryearto2050.TheIAWGestimateata5%discountrateis$13pertonandthereforeconsistentwiththeestimatespresentedhere.

                                                            6InWITCHmultipleregionsaremodeled,hencetheglobalSCCistheresultoftheaggregationofregionalSCC.

 

 

Table4.DistributionoftemperaturechangeintheBasecase,2100,°C 

Page 35: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      34 

Figure6showstheresultsforthetemperaturedistributionsforthemodelsonapercentilescale.Theshapesofthedistributionsaresimilar,althoughtheydifferbyasmuchas1°Cinscaleacrossmostofthedistribution.

Animportantquestionthatthisstudycanaddressiswhether,basedonthecurrentmodelstructuresandtheassumptionsaboutuncertainparameters,thedistributionsofoutcomesarethinorfattailed.Forthesetests,wedefineafattaileddistributionasonethathasaninfinite‐varianceParetoorpower‐lawdistributioninthetails(basedonthediscussioninSchuster1984).VariableswithaParetodistributionhaveinfinitevariancewhentheshapeparameterisbelow2,andtheyhaveaninfinitemeanwithaparameterequaltoorlessthanone.Asaninformaltest,wecanexaminetheratioofthevaluesoftheoutputvariablesatthe99thand

 

 

Table5.Distributionofsocialcostofcarbon,2020(2005$pertonCO2) 

 

  

Figure6.Percentilesofthechangeintemperaturein2100acrossthesixmodels. 

0

1

2

3

4

5

6

7

8

9

 ‐  20  40  60  80  100

Temperature increase, 2100 (deg C)

Percentile of results

DICE FUND

GCAM IGSM

MERGE WITCH

Page 36: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      35 

99.9thpercentile.Foranormaldistribution,theratiooftheseis1.33.ForParetodistributionswithslopevaluesof2.0,1.8,and1.5,theratiosare3.7,3.9,and5.2.IfweexaminetheMonteCarloestimates,themaximumratiois1.56,whichoccursfordamagesintheDICEandFUNDmodels.Whilethissuggestsatailthatisslightlyfatterthanthenormaldistribution,itfallsfarshortoftheslopeassociatedwithaninfinite‐varianceParetoprocess.

Beforepresentingtheresults,wereiteratetheconcernthatthecalibrationrunsdonotextendfarintothetailsforTFP.ThisimpliesthattheresultsontailsreportedhererelyonextrapolationsoftheSRFoutsidethesamplerange.WecommentbelowonourreplicationofthetailestimateswiththeFUNDmodel,whicharegenerallyaccurate.Wealsoemphasizethattheestimatesofthetailsarederivedfromtheinteractionofthemodelswiththeassumedpdfs.Totheextentthatthemodelsomitdiscontinuitiesorsharpnon‐linearities,orthatourassumedpdfsaretoothin‐tailed,thenwemayunderestimatethethicknessofthetails.

WecanalsouseaformaltestoftheParetoshapeparameter,althoughthisismorecomplicatedbecauseitrequiresassumptionsabouttheminimumoftheParetoregion(statisticaltechniquesarefromRytgaard1990).Examiningthetop10%ofthedamagedistributionfortheDICEmodel(themostskewedofthevariables),wefindthattheparameteroftheParetodistributionabovethe1%righttailisestimatedtobe4.7(+0.047),whichiswellbelowtheinfinite‐variancethresholdof2.TheParetoparameterestimateforthe0.1%tailis7.03(+0.22).Thesetestsrejectthehypothesisthatthedistributionsarefat‐tailedinthesenseofbelongingtoaninfinite‐varianceParetodistribution.Theresultsareduetoboththestructuresofthemodelsandthenatureoftheshocks.Nothinginthemodelspreventsthegenerationoffattailsinthissituation,buttheymaymisscriticalnon‐linearities,sothetestsarenotbyanymeansconclusive.

WeexaminedthevalidityoftheresultsforthetailsusingthefullMonteCarloestimateoftheFUNDmodeldiscussedabove.Forthese,wecomparedtheinformaltests(ratioofthevariablesatthe99.9%iletothe99%ile).TheMUPcalculationswereveryaccurateforallvariablesexceptdamages,whereasfordamagestheMUPcalculationsunderestimatedtheskewness(overestimatedtheParetotail).WealsoexaminedtheParetoparameterinthefullFUNDMonteCarloandfoundthattheestimatewassignificantlyabovethethresholdofaninfinitevarianceprocess.

Theresultscanalsobeseeninboxplots.Figure7showstheboxplotfortemperatureincreaseto2100.Figure8showstheboxplotfortheCO2concentrationsfor2100.Bothoftheseunderscorethatwhiletherearedifferencesbetweenthemodelsinthewaythattheyarerunforthisstudy,theyareperhaps

Page 37: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      36 

smallerthanonemighthaveexpected–andaremuchsmallerthanthewithin‐modelvariation.Weshowthisformallyinthenextsection.

 

0

1

2

3

4

5

6

7

DICE FUND GCAM IGSM MERGE WITCH

Temperature increase, 2100 (deg C)

  

Figure7.Boxplotfortheincreaseintemperatureacrossmodelsin2100.Noteonboxplots:Dotismean.Horizontallineismedian.Shadedareaaroundlineis95%confidenceintervalofmedian(usuallytoosmalltosee).Boxcontainsinterquartilerange(IQRor25%ileto75%ile).Theupperstaple(horizontalbar)issetatthemedianplus2timestheIQR,whilelowerstapleissetatthemedianminus2timestheIQR.Theupperstableisapproximatelythe95%ileformostvariables.Becauseofskewnessofthevariables,thelowerstaplerepresentsfaroutliers,andisgenerallyaroundthe0.1%ile. 

Page 38: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      37 

B. Modeluncertaintyv.parametricuncertainty

Inexaminingtheuncertaintiesofclimatechangeandotherissues,acommonapproachhasbeentolookatthedifferencesamongforecasts,models,orapproaches(“ensembles”)andtoassumethattheseareareasonableproxyfortheuncertaintiesabouttheendresultorendogenousvariables.Intheareaofclimatemodels,forexample,researchershaveoftenlookedattheequilibriumclimatesensitivitiesindifferentclimatemodelsandassumedthatthedispersionwouldbeanaccuratemeasureoftheactualuncertaintyoftheECS.

Itisconceptuallyclearthattheensembleapproachisaninappropriatemeasureofuncertaintyofoutcomes.Thedifferenceamongmodelsrepresentsameasureofstructuraluncertainty.Forexample,alternativeclimatemodelsmighthavedifferentwaysofincludingcloudfeedbacks.Takingallthedifferencesamongthemodelswouldindicatehowstate‐of‐the‐artmodelsdifferontheprocessesandvariablesthattheyinclude.Evenhere,however,existingmodelsarelikelytohaveanincompleteunderstandingandwillthereforeunderestimatestructuraluncertainty.However,fromaconceptualvantagepoint,theygenerallydonot

 

200

400

600

800

1,000

1,200

1,400

1,600

1,800

DICE FUND GCAM IGSM MERGE WITCH

CO2 Concentrations, 2100, ppm

 

Figure8.BoxplotforCO2concentrations,2100.Forexplanationofboxplots,seeFigure7. 

Page 39: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      38 

explicitlymodelandconsiderparametricuncertainty.InIAMs,tocomeclosertohome,differencesinmodelsreflectdifferencesinassumptionsaboutgrowthrates,productionfunctions,energysystems,andthelike.Butfewmodelsexplicitlyincludeparametricuncertaintyaboutthesevariables.Differencesinpopulationgrowth,forexample,areverysmallrelativetomeasuresofuncertaintybasedonstatisticaltechniquesbecausemanymodelsusethesameestimatesoflong‐runpopulationtrends.

WecanusetheresultsoftheMonteCarlosimulationstoestimatetherelativeimportanceofparametricuncertaintyandmodeluncertainty.WecanwritetheresultsoftheMonteCarlosimulationsschematicallyasfollows.Assumethatthe

modeloutcomeforvariableiandmodelmis miY andthattheuncertainparameters

are and i ju u :

3 3

,1 1 1

jm m m m

i i i i i j i ji j i

Y u u u

Foragivendistributionofeachoftheuncertainparameters,thevarianceof iY

includingmodelvariationis:

3 32 2 2 2 2 2 2

,1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )j

m mi i i i i j i j

i j i

Y u u u

Thefirsttermontherighthandsideisthevarianceduetomodeldifferences(orstructuraluncertainty),whilethesecondandthirdtermsarethevarianceduetoparameteruncertainty.Forthispurpose,weincludetheinteractionofthemodel

coefficients ,( and )m mi i j andtheparameteruncertainties 2[ ( )]iu asparametric

uncertaintybecausetheywouldnotbeincludedinensembleuncertainty.Theothertermsvanishbecauseweassumethattheparametricuncertaintiesareindependent.Whiledependencewilladdfurthertermsontheright‐handsideoftheequationforthevariance,itwillnotaffectthefractionduetostructuraldifferencesduetothefirstterm.

Wecaneasilyestimatethetotaluncertaintyandthestructuraluncertaintyfordifferentvariables.TheresultsareshowninTable6.Formostvariables,virtuallyallthevarianceisexplainedbyparametricuncertainty.Forexample,94%ofthevarianceofthe2100temperatureincreaseinallthemodelsisexplainedbyparametricuncertainty,andonly6%isexplainedbydifferencesinmodelmeans.ThisfactiseasilyseenintheboxchartsinFigures7and8.Theonlyvariablefor

Page 40: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      39 

whichmodeluncertaintyisimportantisthesocialcostofcarbon,forwhichfour‐fifthsofthetotalvarianceisduetomodeldifferences.

Wecanputtheseresultsintermsofthevariabilitiesduetodifferentfactors.Ifwetakethecalculatedtemperatureincreaseto2100,theoverallstandarddeviationis0.84°Cincludingbothmodelandparametricuncertainty.Thestandarddeviationofthemodelmeansaloneis0.21°C.Sothevariabilitymeasuredintermsofstandarddeviationsofthetemperatureincreaseisunderestimatedbyafactoroffourusingtheensembletechnique.

Theneteffectoftheseresultsissobering.Theyindicatethatthetechniqueofrelyinguponensemblesasatechniquefordeterminingtheuncertaintyoffutureoutcomesis(atleastforthemajorclimatechangevariables)highlydeficient.Ensembleuncertaintytendstounderestimateoveralluncertaintybyasignificantamount.

C. Sensitivityoftheresultstoparametervariability

Animportantquestionistheextenttowhichtheresultsaresensitivetotheindividualpdfsfortheuncertainparameters.Totestforsensitivity,weperformedanexperimentwhereweincreasedthestandarddeviationofeachofthepdfsbyafactorof2,bothoneatatimeandtogether.Foradoublingofthestandarddeviationofallparameters,theincreaseinthestandarddeviationof2100temperaturewasa

 

  

Table6.Fractionofuncertainty(variance)explainedbymodeldifferences. 

Page 41: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      40 

factorof1.83forallmodelstogether.Webelievethatthisislessthantwobecausetheshort‐runtemperatureimpactisnotproportionaltotheECS.

Table7showstheresultschangingtheuncertaintybyafactoroftwooneparameteratatimefortheaverageofthe6modelsforallvariableswhichareproducedbythesixmodels.Thenumbershowstheratioofthestandarddeviationofthe2100valueofthevariableinthesensitivitycaserelativetothecasewithassumedpdfs.Doublingalluncertaintiesproducesclosetoadoublingoftheoutputuncertainty,withsomedeviationsbecauseofnon‐linearities.

Doublingpopulationuncertaintyhasasmalleffectonallvariablesexceptpopulation.Doublingequilibriumtemperatureuncertaintyraisestheuncertaintyof2100temperatureby40%buthasnosignificanteffectonotheruncertainties.ThemajorsensitivityisTFPuncertainty.Doublingthisuncertaintyleadstoclosetodoublingoftheuncertaintyofothermajoreconomicvariables,andtoanincreaseof62percentintheuncertaintyof2100temperature.ThisresultissimilartoaresultinvanVuurenetal.(2008),whichsuggeststhatuncertaintyinGDPgrowthdominatestheuncertaintyinemissions.

Thesummaryonsensitivityoftheresultstothepdfsshowsanimportantandsurprisingresult.Onthewhole,theresultsareinsensitivetochangesinthepopulationgrowthpdf;aremoderatelysensitivetotheuncertaintyabout

 

  

Table7.Sensitivityofoutcomesforchangesinstandarddeviationofeachuncertainparameterbyfactorof2Thefiguregivestheratioofthestandarddeviationofthevariableatthetopofthecolumntothestandarddeviationinthebaserun.Forexample,doublingthestandarddeviationofpopulationincreasedthestandarddeviationof2100temperatureby6%.

Page 42: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      41 

equilibriumtemperaturesensitivityontemperature(aswellastodamagesandthesocialcostofcarbon,notshown);andareextremelysensitivetotheuncertaintyabouttherateofgrowthofproductivity.Whilelong‐runproductivitygrowthhasthegreatestimpactonuncertainty,itisalsotheleastcarefullystudiedofanyoftheparameterswehaveexamined.Thisresultsuggeststhatmuchgreaterattentionshouldbegiventodevelopingreliableestimatesofthetrendanduncertaintiesaboutlong‐runproductivity.

VIII. Conclusions

Thisstudyisthefirstmulti‐modelanalysisofparametricuncertaintyineconomicclimate‐changemodeling.Theapproachisbasedonestimatingclassicstatisticalforecastuncertainty.Thecentralmethodologyconsistsoftwotracks.TrackIinvolvesdoingasetofmodelcalibrationrunsforthesixmodelsandthreeuncertainparametersandestimatingasurfaceresponsefunctionfortheresultsofthoseruns.TrackIIinvolvesdevelopingpdfsforkeyuncertainparameters.ThetwotracksarebroughttogetherthroughasetofMonteCarlosimulationstoestimatetheoutputdistributionsofmultipleoutputvariablesthatareimportantforclimatechangeandclimate‐changepolicy.Thisapproachisreplicableandtransparent,andovercomesseveralobstaclesforexamininguncertaintyinclimatechange.

Herearethekeyresults.First,thecentralprojectionsoftheintegratedassessmentmodels(IAMs)areremarkablysimilaratthemodeler’sbaselineparameters.Thisresultisprobablyduetothefactthatmodelshavebeenusedinmodelcomparisonsandmayhavebeenrevisedtoyieldsimilarbaselineresults.However,theprojectionsdivergesharplywhenalternativeassumptionsaboutthekeyuncertainparametersareused,especiallyathighlevelsofpopulationgrowth,productivitygrowth,andequilibriumclimatesensitivity.

Second,despitethesedifferencesacrossmodelsforalternativeparameters,thedistributionsofthekeyoutputvariablesareremarkablysimilaracrossmodelswithdifferentstructuresandlevelsofcomplexity.Totakeyear2100temperatureasanexample,thequantilesofthedistributionsofthemodelsdifferbylessthan½°Cfortheentiredistributionuptothe95thpercentile.

Third,wefindthattheclimate‐relatedvariablesarecharacterizedbylowuncertaintyrelativetothoserelatingtomosteconomicvariables.Forthiscomparison,welookatthecoefficientofvariation(CV)oftheMonteCarlosimulations.AsshowninTable2,CO2concentrations,radiativeforcings,andtemperature(allfor2100)haverelativelylowCV.OutputanddamageshaverelativelyhighCV.Asexamples,themodel‐averagecoefficientofvariationforcarbondioxideconcentrationsin2100is0.28,whilethecoefficientofvariationfor

Page 43: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      42 

climate‐changedamagesis1.29.ThesocialcostofcarbonhasanintermediateCVwithinmodels,butwhenmodelvariationisincludedtheCVisclosetothatofoutputanddamages.Theseresultshighlighttheimportanceoffurtherresearchoneconomicvariablesanddamagefunctionsforreducinguncertaintyandimprovingpolicymaking(e.g.,seePizeretal.2014andDrouetetal.2015).

Fourth,wefindmuchgreaterparametricuncertaintythanstructural(acrossmodel)uncertaintyforalloutputvariablesexceptthesocialcostofcarbon.Forexample,inexaminingtheuncertaintyin2100temperatureincrease,thedifferenceofmodelmeans(ortheensembleuncertainty)isapproximatelyone‐quarterofthetotaluncertainty,withtherestdrivenbyparametricuncertainty.Whilelookingacrosssixmodelsbynomeansspansthespaceofmethods,thesixmodelsexaminedherearerepresentativeofthedifferencesinsize,structure,andcomplexityofIAMs.Thisresultisimportantbecauseofthewidespreaduseofensembleuncertaintyasaproxyforoveralluncertaintyandhighlightstheneedforare‐orientationofresearchtowardsexaminingparametricuncertaintyacrossmodels.

Afifthinterestingfindingofthisanalysisisthelackofevidenceinsupportoffattailsinthedistributionsofemissions,globalmeansurfacetemperature,ordamages.Populationgrowth,totalfactorproductivitygrowth,andclimatesensitivityareverylikelytobethreeofthekeyuncertainparametersinclimatechange.Yet,basedonbothinformalandformaltests,themodelsascurrentlyconstructedfindthatthetailsarerelativelythin.Thedeclineinprobabilitiesassociatedwithachangeinanyofthevariablesismuchlargerthanwouldbeassociatedwithaninfinite‐varianceParetoprocess.Asdiscussedabove,weemphasizethatthesefindingsshouldbeinterpretedinthecontextofthecurrentgroupofmodelsandtheassumedpdfs.Theresultsdonotruleoutfattails,buttheydoprovideempiricalevidenceagainstfattailsinoutcomesinvestigatedinthisstudyforthecurrentsetofmodelsandthedistributionsofthethreeuncertainvariablesconsideredhere.Theseresultstendtosupporttheuseofexpectedbenefit‐costanalysisforclimatechangepolicy,incontrasttosuggestionsbysomeauthorsthatneglectoffattaileventsmayvitiatestandardanalyses(Weitzman2009).

Sixth,wefindthatwithinawiderangeofuncertainty,changesindispersionoftwooftheuncertainparameterstakensinglyhavearelativelysmalleffectontheuncertaintyoftheoutputvariables,thesebeingpopulationgrowthandequilibriumtemperaturesensitivity.However,uncertaintyaboutproductivitygrowthhasamajorimpactontheuncertaintyofallthemajoroutputvariables.Thereasonforthisisthattheuncertaintyofproductivitygrowthfromtheexpertsurveycompoundsgreatlyoverthe21stcenturyandinducesanextremelylargeuncertainty

Page 44: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      43 

aboutoutput,emissions,concentrations,temperaturechange,anddamagesbytheendofthecentury. Asinanystudy,thisanalysisisintentionallysharplyfocused.Byanalyzingparametricuncertaintyinthreekeyparameters,wedonotclaimtobecapturingalluncertaintiesinclimatechange.Aswedescribeabove,therearemanyuncertaintiesthatcannotbecapturedusingthestatisticalframeworkdevelopedhere.ButbyprovidingdetailedestimatesofuncertaintyacrossarangeofIAMsthatarecurrentlybeingusedinthepolicyprocess,webelievethatwehavesignificantlyimprovedtheunderstandingofuncertaintyinclimatechange.Moreover,ournewtwo‐trackmethodologyiswell‐suitedforexpansiontoadditionalparametersandmodels,andcanbereadilyusedtoexploreadditionalconcerns,suchastheinteractionbetweencarbonpoliciesanduncertainty.

Page 45: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      44 

Appendix1.FurtherDetailsontheChoiceofECSDistribution

Thisappendixexplainstheprocedurefordevelopingthepdfforclimatesensitivity.Thestudybeganbyreviewingthefiveprobabilitydensityfunctionsforequilibriumclimatesensitivity(ECS)usedintheIPCCAR5thatdrawuponmultiplelinesofevidence.TheseareAldrinetal.(2012),LibardoniandForest(2013),Olsenetal.(2012),AnnanandHargreaves(2006),andHegerletal.(2006).FigureA1illustratesthelog‐normalfitstoeachofthesedistributions(fitsbythepresentauthors).

Ourchosenstudy,Olsenetal.(2012),isrepresentativeofthestudiesinbothitsmethodologyandresults.ItusesaBayesianapproach.Thepriordistributionwasconstructedtofitthe“mostlikely”valuesand“likely”rangesinFigure3inKnuttiandHegerl(2008)basedonthesummarystatisticsofthe“currentmeanclimatestate”and“LastGlacialMaximummodels.”Olsenetal.assumeaninverseGaussian(Wald)distributionandobtainthispriorbyassumingindependencebetweenthe

 

  

FigureA1.Log‐normaldistributionsfittotheprobabilitydensityfunctionscitedintheIPCCAR5.ThedistributionshownhereisfromtheupdatedLibardoni&Forest(2013)figures. 

Page 46: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      45 

currentmeanclimatestateandthelastglacialmaximummodels,andthencomputingthemixturedistribution.

TheposteriordistributionisthencalculatedbyusingaMarkovChainMonteCarlosimulationtoupdatethepriorwithalikelihoodfunction.Thelikelihoodisbasedonseveraldifferenttracers,suchasglobalaverageatmosphericsurface/oceansurfacetemperaturesandglobaltotalheatcontent.ThesetracerscomefromtheUniversityofVictoriaESCMclimatemodel,whichconsistsofathree‐dimensionaloceangeneralcirculationmodelcoupledwithathermodynamic/dynamicsea‐icemodel.Theauthorsassumeindependence,sothatthelikelihoodofbothobservationsisequaltotheproductofthelikelihoods.

Theparametersofthelog‐normaldistributionfittoOlsenetal.areμ=1.10704andσ=0.264.Themajorsummarystatisticsofthereferencedistributioninthestudyarethefollowing:mean=3.13,median=3.03,standarddeviation=0.843,skewness=0.824,andkurtosis=4.23.InimplementingtheMonteCarloforeachmodel,weretainedthemeanECSforthatmodel.Wethenimposedalog‐normaldistributionthatretainedthearithmeticstandarddeviationoftheECS(i.e.,astandarddeviationof0.843)basedontheOlsenetal.(2012)distribution.

Page 47: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      46 

Appendix2.ExpertSurveyonTotalFactorProductivity

Akeycomponentoftheprojectwasdeterminingtheuncertaintyinproductivity(or,asoperationallydefined,outputpercapita).Areviewofexistingstudiesindicatedthattherewerenodetailedstudiesoffutureoutputuncertaintiesoutto2100thatwecouldrelyon.Wethereforedecidedtoundertakeanexpertelicitation.Thedetailedresultsofthesurveywillbeshortlyavailableseparatelyasaworkingpaper.Thisappendixsketchesthemethodsandsummarizesthepreliminaryresults.Notethatthecurrentresultsincludeonly11oftherespondents,andthecompletesurveyresultswillbeusedforthefinalpublication.

2.1 SurveyDesign

Indeterminingtheprobabilitydistributionoffutureproductivitygrowth,amajordifficultyisthenon‐stationarityofthisvariable.Itisclearlynon‐stationaryifoneexamineshistoricaldata.Fromatheoreticalpointofview,wewouldexpectnon‐stationaritybecausethemajordeterminantsoflong‐rungrowth–inventionandtechnologicalchange–involvenewanddifferentprocessesratherthanreplicationofsomeunderlyingprocess.Forthisreason,itisimportanttooverlayanyempiricalstudywithexpertviews.

Expertopinionhasbeenusedsystematicallyinaverylimitednumberofstudiesofeconomicgrowth.Forexample,Websteretal.(2002)analyzeuncertaintyintheGDPgrowthrateoutto2100(asaproxyforchangesinlaborproductivity)usingestimatescollectedfromanelicitationof5expertsfromasingleinstitution.Thisseemedtoothinabaseforthepresentstudy.

Inthisstudy,weconductedasurveyofexpertpredictionsaboutuncertaintyinglobalannualgrowthratesfortheperiod2010‐2100.Expertsprovidedresponsesusinganonlinesurvey(seeFigureA2fortheresponseformat).Thepanelofexpertswasselectedthroughaprocessofnominationbyleadingeconomists.

Weaskedexpertsaboutgrowthratesinhigh‐,medium‐,andlow‐incomecountries,aswellasaboutglobalaggregaterates.Aspartofthesurvey,wealertedexpertstoproblemsofoverconfidenceandincludeawarm‐upsectionthatwasdesignedtoincreaseawarenessoftheirpersonaloverconfidence.Inaddition,weaskedexpertsaboutanyambiguitiesthattheyexperiencedinthesurveyand

Page 48: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      47 

providedthemwithhistoricaldataongrowthratesfortheperiod1900‐2000fromBarro‐Ursua(2010)andMaddison(2003).7

Thesurveywascomprisedof4setsofquestionsaboutgrowthrates:(1)centralestimates(50thpercentile)forgrowthratesfor2010‐2050and2010‐2100,(2)estimatesofuncertaintybasedonprovidingthe10th,25th,75th,and90thpercentilesofthegrowthrates,(3)theprojectedmagnitudeofeffectsofpositiveandnegativeshockstotheeconomy,and(4)near‐termpredictions(forthefollowingyear).Weaskedeachexperttodescribetherationalefortheirresponseaswellasanexplanationofmajorpositiveandnegativeshocks.Thesurveyalsoaskedexpertstoidentifyoutsidesourcesofinformationthatwereusedtogenerateforecastsandtoranktheirownexpertiseoverallandforparticularregions.

2.2 CombiningExpertDistributions

Weusetwomethodstoestimatethemeanandstandarddeviationforthe

best‐fittingcombinednormaldistributionofgrowthratesfortheperiod2010‐2100.

Thefirstmethodassumesthatexpertshaveestimatesofquantilesofthedistributionoflong‐rungrowthrates.Thecombinedpdfisthenthedistributionthatminimizesthesumofsquareddifferencesbetweenthecombinednormal

                                                            7Barro‐UrsuaMacroeconomicDataavailableat:rbarro.com/data‐sets/.MaddisonisfromAngusMaddison(2003).Availableat:http://www.theworldeconomy.org/statistics.htm.

 

  

FigureA2.ResponseFormatforExpertSurvey 

Page 49: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      48 

distributionateachquantileandtheaverageofthequantileestimatesoftheexperts.Thesecondmethodbeginswithestimatesoftheparametersofthebest‐fittingnormaldistributionforeachexpert;andthentakesthesamplemeansoftheparametersoftheexpertsforthecombinednormaldistribution.

Wefindverylittledifferencebetweenthetwomethods.Forthepreliminarysample,themeangrowthratesofpercapitaoutputforthetwomethodsare2.29and2.30,respectivelyformethods1and2.Thecombinedstandarddeviationsare1.15and1.17,respectively.

Thecombinedpdfsalongwith11preliminaryresponsesareshowninFigure2inthemaintext.ThecurrentprocedureusesthesamplemeanofthestandarddeviationfortheMonteCarloestimates,butweareconsideringusingarobustestimatorforthefinalreport.

Page 50: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      49 

Appendix3.AdditionalLatticeDiagrams

Weincludeherefurtherlatticediagrams.Thestructureisasdescribedinthetext.Theonlydifferenceistheoutputvariable,whichisshownatthetopofthegraph.

Notethatthefirstgroupofdiagramsisforthebaseruns,whilethesecondgroupisfortherunswithcarbontaxes(CarbonTaxorAmpereruns).

Page 51: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      50 

Page 52: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      51 

Page 53: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      52 

Page 54: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      53 

Page 55: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      54 

Page 56: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      55 

Appendix4.AdditionalTablesandGraphs

TableA1.Overviewofglobalintegratedassessmentmodelsincludedinthisstudy.

Model Numberof

EconomicRegions

TimeHorizon

VariablesIncluded

KeyCharacteristics SelectedReference

s

DICE 1 2010‐2300

1,2,3,5,6 Optimalgrowthmodel,endogenousGDPandtemperature,exogenouspopulation,SWFisCESwithrespecttoconsumption.

(NordhausandSztorc2014)

FUND 16 1950‐3000

1,2,3,4,5,6,7

Multi‐region,multi‐gas,detaileddamagefunctions,exogenousscenariosperturbedbymodel

(AnthoffandTol2010,2013)

GCAM 14 2005‐2095

1,2,3,4,5,7 Integratedenergy‐land‐climatemodelwithtechnologydetail;exogenouspopulationandGDP;endogenousenergyresources,agriculture,andtemperature;economiccostsarecalculatedforproducerandconsumersurpluschange

(Calvinandetal.2011)

IGSM 16

2100 1,2,3,4,5,7 Fullgeneralcirculationmodellinkedtoamultisector‐multiregiongeneralequilibriummodeloftheeconomywithexplicitadvancedtechnologyoptions

(Chenetal.2015,Sokolovetal.2009,Websteretal.2012)

MERGE 10 2100 1,2,3,4,5,7 Ramseymodelcoupled (Blanford

Page 57: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      56 

withenergyprocessmodel,multipleregions,endogenousGDPandtemperature,exogenouspopulation

etal.2014)

WITCH 13 2150 1,2,3,4,5,6,7

Optimalgrowthmodel,endogenousGDPandtemperature,exogenouspopulation,SWFisCESwithrespecttoconsumption.

(Bosettietal.2006)

Notes:SWF=socialwelfarefunction,CES=constantelasticityofsubstitution.Forvariablesincludedthekeyis:1=GDP,population2=CO2emissions,CO2concentrations3=globaltemperature4=multipleregions5=mitigation6=damages7=non‐CO2GHGs

Page 58: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      57 

ResultsofMonteCarlosimulationsformodelsandmajorvariables[Allvariablesare2100exceptSCC,whichis2020]

Page 59: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      58 

FigureforboxplotsforCO2emissions,2100.Fordiscussionofboxplots,seeFigure7.

 

-100

0

100

200

300

400

500

DICE FUND GCAM IGSM MERGE WITCH

CO2 emissions, 2100 (billions tons CO2)

Page 60: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      59 

DICEFUNDWITCH

Figureforboxplotsforsocialcostofcarbon,2020.Fordiscussionofboxplots,seeFigure7.

Page 61: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      60 

Estimatesfromsurfaceresponsefunctionsbyvariableandmodel.

Page 62: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      61 

GoodnessoffitofworstfittingLQIvariablebymodel.

Tableshowstheresidualvariance(1‐R2)fortheworstfittingoftheequations.Forexample,intheLQIspecification,theworstSRFfortheDICEmodelistheequationforpopulation,whichhasaresidualvarianceof0.00706.FortheMERGEmodel,theworstequationisforCO2emissions.NoteaswellthattheonlytwomodelsforwhichtheworstequationhasasignificantreductioninresidualvariationfromLQItoLQI++aretheIGSMandWITCHmodels.

Page 63: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      62 

References

Acemoglu,D.,S.Johnson,andJ.Robinson.2005."InstitutionsasaFundamentalCauseofLong‐runGrowth."InHandbookofEconomicGrowth,editedbyPhilippeAghionandStevenDurlauf.North‐Holland.

Anthoff,D.,andR.Tol(2010)."OnInternationalEquityWeightsandNationalDecisionMakingonClimateChange."JournalofEnvironmentalEconomicsandManagement60(1):14‐20.

Anthoff,D.,andR.Tol(2013)."TheUncertaintyAbouttheSocialCostofCarbon:ADecompositionAnalysisUsingFUND."ClimaticChange117(3):515‐530.

Armstrong,J.Scott.(2001)."Combiningforecasts."Principlesofforecasting.SpringerUS,417‐439.

Baker,E.(2005)."UncertaintyandLearninginaStrategicEnvironment:GlobalClimateChange."ResourceandEnergyEconomics27(1):19‐40.

Batchelor,Roy,andPamiDua(1995)."Forecasterdiversityandthebenefitsofcombiningforecasts."ManagementScience41.1(1995):68‐75.

Blanford,G.,J.Merrick,R.Richels,andR.Steven(2014)."Trade‐offsBetweenMitigationCostsandTemperatureChange."ClimaticChange123(3‐4):527‐541.

Bosetti,V.,C.Carraro,M.Galeotti,E.Massetti,andM.Tavoni(2006)."WITCH:AWorldInducedTechnicalChangeHybridModel."EnergyJournal27(SI2):13‐37.

Bosetti,V.,C.Carraro,E.Massetti,andM.Tavoni.2014.ClimateChangeMitigation,TechnologicalInnovationandAdaptation:EdwardElgarPublishers.

Brynjolfsson,E.,andA.McAfee.2012.RaceAgainsttheMachine:HowtheDigitalRevolutionisAcceleratingInnovation,DrivingProductivity,andIrreversiblyTransformingEmploymentandtheEconomy:DigitalFrontierPress.

Calvin,K.,andetal.2011.GCAMWikiDocumentation.http://wiki.umd.edu/gcam/index.php?title=Main_Page.CollegePark,MD:JointGlobalChangeResearchInstitute.

CBO.2005.UncertaintyinAnalyzingClimateChange:PolicyImplications.Washington,DC:CongressionalBudgetOffice.

Chen,Y.‐H.,S.Paltsev,J.Reilly,J.F.Morris,andM.H.Babiker.2015.TheMITEPPA6Model:EconomicGrowth,EnergyUse,andFoodConsumption,MITJointProgramReportNumber278.Cambridge,MA.

Page 64: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      63 

Clarke,L.,andJ.Weyant(2009)."IntroductiontotheEMF22SpecialIssueonClimateChangeControlScenarios."EnergyEconomics31(2):S63.

Clemen,RobertT.,andRobertL.Winkler(1999)."Combiningprobabilitydistributionsfromexpertsinriskanalysis."Riskanalysis19.2:187‐203.

Clements,M.,andD.Hendry.1998.ForecastingEconomicTimeSeries.Cambridge,UK:CambridgeUniversityPress.

Clements,M.,andD.Hendry.1999.ForecastingNon‐stationaryEconomicTimeSeries.Cambridge,MA:MITPress.

deFinetti,B.(1937)."Laprevision:Sesloislogiques,sessourcessubjectives."Annalesdel'InstitutHenriPoincaré7:1‐68.

Edmonds,J.,andJ.Reilly(1983a)."GlobalEnergyandCO2totheYear2050."EnergyJournal4(3):21‐47.

Edmonds,J.,andJ.Reilly(1983b)."GlobalEnergyProductionandUsetotheYear2050."Energy8(6):419‐432.

Edmonds,J.,andJ.Reilly(1983c)."ALong‐termGlobalEnergy‐economicModelofCarbonDioxideReleaseFromFossilFuelUse."EnergyEconomics5(2):74‐88.

Ericsson,N.2001.ForecastUncertaintyinEconomicModeling.Washington,DC:BoardofGovernorsoftheFederalReserveSystemInternationalFinanceDiscussionPapers.

Fernald,J.,andC.Jones.2014.TheFutureofU.S.EconomicGrowth.Cambridge,MA:NationalBureauofEconomicResearchWorkingPaper19830

Freeman,R.2010."WhatDoesGlobalExpansionofHigherEducationMeanfortheUnitedStates?"InAmericanUniversitiesinaGlobalMarket,373‐404.UniversityofChicagoPress.

Gordon,R.2012.IsU.S.EconomicGrowthOver?FalteringInnovationConfrontstheSixHeadwinds.Cambridge,MA:NationalBureauofEconomicResearchWorkingPaper18315.

Greenstone,M.,E.Kopits,andA.Wolverton(2013)."DevelopingaSocialCostofCarbonforUSRegulatoryAnalysis:AMethodologyandInterpretation."ReviewofEnvironmentalEconomicsandPolicy7(1):23‐46.

Hammersley,J.M.,andD.C.Handscomb.1964.MonteCarloMethods.NewYork:JohnWileyandSons.

Hope,C.(2006)."TheMarginalImpactofCO2fromPAGE2002:AnIntegratedAssessmentModelIncorporatingtheIPCC'sFiveReasonsforConcern."IntegratedAssessment6(19‐56).

IAWG.2010.TechnicalSupportDocument:SocialCostofCarbonforRegulatoryImpactAnalysisUnderExecutiveOrder12866.Washington,DC:InteragencyWorkingGroupontheSocialCostofCarbon.

Page 65: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      64 

IAWG.2013.TechnicalSupportDocument:TechnicalUpdateoftheSocialCostofCarbonforRegulatoryImpactAnalysisUnderExecutiveOrder12866.Washington,DC:InteragencyWorkingGroupontheSocialCostofCarbon.

InterAcademyCouncil.2010.ClimateChangeAssessments:ReviewoftheProcessesandProceduresoftheIPCC,2010,HaroldShapiro,chair.

IPCC.2014.FifthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Cambridge,UKandNewYork,NY:CambridgeUniversityPress.

Knutti,R.,andG.Hegerl(2008)."TheEquilibriumSensitivityoftheEarth'sTemperaturetoRadiationChanges."NatureGeoscience1:735‐743.

Kriegler,E.,N.Peterman,V.Krey,V.J.Schwanitz,G.Luderer,S.Ashina,V.Bosetti,J.Eom,A.Kitous,A.Mejean,L.Paroussos,F.Sano,H.Turton,C.Wilson,andD.VanVuuren(2015)."DiagnosticIndicatorsforIntegratedAssessmentModelsofClimateChange."TechnologicalForecastingandSocialChange90(A):45‐61.

Lemoine,D.,andH.McJeon(2013)."TrappedBetweenTwoTails:TradingOffScientificUncertaintiesviaClimateTargets."EnvironmentalResearchLetters8:1‐10.

Lenton,T.,H.Held,E.Kriegler,J.Hall,W.Lucht,S.Rahmstorf,andH.J.Schellnhuber(2008)."TippingElementsintheEarth'sClimateSystem."ProceedingsoftheNationalAcademyofSciences105(6):1786‐1793.

Lutz,W.,ed.1996.TheFuturePopulationoftheWorld:WhatCanWeAssumeToday?London:EarthscanPublicationLtd.

Lutz,W.,W.Butz,andS.KC.2014.WorldPopulationandHumanCapitalintheTwenty‐FirstCentury.Oxford,UK:OxfordUniversityPress.

Lutz,W.,W.Sanderson,andS.Scherbov.1998."Expert‐basedProbabilisticProjections."InFrontiersofPopulationForecasting,editedbyWolfgangLutz,J.W.VaupelandD.A.Ahlburg,139‐155.PopulationandDevelopmentReview.

Lutz,W.,W.Sanderson,andS.Scherbov.IIASA's2007ProbabilisticWorldPopulationProjections,IIASAWorldPopulationProgramOnlineDataBaseofResults2008.Availablefromhttp://www.iiasa.ac.at/web/home/research/researchPrograms/WorldPopulation/Reaging/2007_update_prob_world_pop_proj.html.

Manne,A.,R.Mendelsohn,andR.Richels(1999)."MERGE:AModelforEvaluatingRegionalandGlobalEffectsofGreenhouseGasReductionPolicies."EnergyPolicy23(1):17‐34.

Meinshausen,M.,S.C.Raper,andT.Wigley(2011)."EmulatingCoupledAtmosphere‐OceanandCarbonCycleModelswithaSimplerModel,MAGICC6‐PartI:

Page 66: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      65 

ModelDescriptionandCalibration."AtmosphericChemistryandPhysics11:1417‐1456.

Nordhaus,W.2008.AQuestionofBalance:WeighingtheOptionsonGlobalWarmingPolicies.NewHaven,CT:YaleUniversityPress.

Nordhaus,W.,andD.Popp(1997)."WhatistheValueofScientificKnowledge?AnApplicationtoGlobalWarmingUsingthePRICEModel."EnergyJournal18(1):1‐45.

Nordhaus,W.,andP.Sztorc.2014.DICE2013:IntroductionandUser'sManual.NewHaven,CT:YaleUniversity.

NRC.2000.BeyondSixBillion:ForecastingtheWorld'sPopulation.Washington,DC:NationalAcademyPress.

O'Neill,B.,D.Balk,M.Brickman,andM.Ezra(2001)."AGuidetoGlobalPopulationProjections."DemographicResearch4(8):203‐288.

Olsen,R.,R.Sriver,M.Goes,N.Urban,D.Matthews,M.Haran,andK.Keller(2012)."AClimateSensitivityEstimateUsingBayesianFusionofInstrumentalObservationsandanEarthSystemModel."GeophysicalResearchLetters117(D04103):1‐11.

Peck,S.,andT.Teisberg(1993)."GlobalWarmingUncertaintiesandtheValueofInformation:AnAnalysisUsingCETA."ResourceandEnergyEconomics15(1):71‐97.

Pizer,W.(1999)."OptimalChoiceofClimateChangePolicyinthePresenceofUncertainty."ResourceandEnergyEconomics21(3‐4):255‐287.

Pizer,W.,M.Adler,J.Aldy,D.Anthoff,M.Cropper,K.Gillingham,M.Greenstone,B.Murray,R.Newell,R.Richels,A.Rowell,S.Waldhoff,andJ.Wiener(2014)."UsingandImprovingtheSocialCostofCarbon."Science346(6214):1189‐1190.

Ramsey,F.1931."TruthandProbability."InTheFoundationsofMathematicsandOtherLogicalEssays,editedbyRichardBevanBraithwaite,156‐198.London,UK:Kegan,Paul,Trench,TrubnerandCompany.

Reilly,J.,J.Edmonds,R.Gardner,A.Brenkert(1987)"MonteCarloAnalysisoftheIEA/ORAUEnergy/CarbonEmissionsModel."EnergyJournal8:1‐29.

Revesz,R.,P.Howard,K.Arrow,L.Goulder,R.Kopp,M.Livermore,M.Oppenheimer,andT.Sterner(2014)."GlobalWarming:ImproveEconomicModelsofClimateChange."Nature508(7495):173‐175.

Robinson,A.,R.Calov,andA.Ganopolski(2012)."MultistabilityandCriticalThresholdsoftheGreenlandIceSheet."NatureClimateChange2:429‐432.

Rytgaard,Mette(1990)."EstimationintheParetodistribution."AstinBulletin20.02:201‐216.

Page 67: MODELING UNCERTAINTY IN CLIMATE CHANGE: A … · Modeling Uncertainty in Climate Change: ... , the parameter pdfs) ... wide range of recommendations about how to address the risks

      66 

Savage,L.1954.TheFoundationsofStatistics.NewYork:JohnWileyandSons.Schuster,EugeneF.(1984).”ClassificationofProbabilityLawsbyTailBehavior,”

JournaloftheAmericanStatisticalAssociation,Vol.79,No.388:936‐939.Sokolov,A.,P.H.Stone,C.Forest,R.Prinn,M.Sarofim,M.Webster,S.Paltsev,A.

Schlosser,D.Kicklighter,S.Dutkiewicz,J.Reilly,C.Wang,B.Felzer,J.Melillo,andH.Jacoby(2009)."ProbabilitisticForecastfor21stCenturyClimateBasedonUncertaintiesinEmissions(withoutPolicy)andClimateParameters."JournalofClimate22(19):5175‐5204.

Tol,Richard(1997)"OntheOptimalControlofCarbonDioxideEmissions‐AnApplicationofFUND."EnvironmentalModellingandAssessment,2:151‐163.

USInteragencyWorkingGroup.2013.TechnicalUpdateoftheSocialCostofCarbonforRegulatoryImpactAnalysisUnderExecutiveOrder12866.Washington,DC:ExecutiveOfficeofthePresident.

vanVuuren,D.,B.deVries,A.Beusen,andP.Heuberger(2008)."ConditionalProbabilisticEstimatesof21stCenturyGreenhouseGasEmissionsBasedontheStorylinesoftheIPCC‐SRESScenarios."GlobalEnvironmentalChange,18:635‐654.

Weaver,A.,M.Eby,E.Wiebe,C.Bitz,P.Duffy,T.Ewen,A.Fanning,M.Holland,A.MacFadyen,D.Matthews,K.Meissner,O.Saenko,A.Schmittner,H.Wang,andM.Yoshimori(2001)."TheUVicEarthSystemClimateModel:ModelDescription,Climatology,andApplicationstoPast,PresentandFutureClimates."Atmosphere‐Ocean39(4):361‐428.

Webster,M.(2002)."TheCuriousRoleofLearning:ShouldWeWaitforMoreData?"EnergyJournal23(2):97‐119.

Webster,M.,M.H.Babiker,M.Mayer,J.Reilly,J.M.Harnisch,M.Sarofim,andC.Wang(2002)."UncertaintyinEmissionsProjectionsforClimateModels."AtmosphericEnvironment36(22):3659‐3670.

Webster,M.,A.Sokolov,J.Reilly,C.Forest,S.Paltsev,A.Schlosser,C.Wang,D.Kicklighter,M.Sarofim,J.Melillo,R.Prinn,andH.Jacoby(2012)."AnalysisofClimatePolicyTargetsUnderUncertainty."ClimaticChange112(3‐4):569‐583.

Weitzman,M.(2009)."OnModelingandInterpretingtheEconomicsofCatastrophicClimateChange."ReviewofEconomicsandStatistics91(1):1‐19.