Top Banner
Carnegie Mellon University Carnegie Mellon University Jimmy Zhu 1 , D. Bromberg 1 , V. Sokalski 2 , M. Moneck 1 , L. Pileggi 1 1 Department of Electrical and Computer Engineering 2 Department of Material Science and Engineering Carnegie Mellon University, Pittsburgh, U.S.A. mLogic All Spin Logic Device and Circuits for Future Electronics
50

mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Jun 19, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

1

Carnegie Mellon University

Jimmy Zhu1, D. Bromberg1, V. Sokalski2, M. Moneck1, L. Pileggi 1

1Department of Electrical and Computer Engineering 2Department of Material Science and Engineering

Carnegie Mellon University, Pittsburgh, U.S.A.

mLogic

All Spin Logic Device and Circuits for Future Electronics

Page 2: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

2 mLogic People

David Bromberg, Ph.D.

Postdoc Fellow

Testing and modeling

Matthew Moneck

Research Scientist

Device fab and testing

Vincent Sokalski

Research Professor

Thin film fabrication

En Yang

Postdoc Fellow

Thin film fabrication

Daniel Morris

Ph.D. student

Circuit modeling and analysis

Larry Pileggi

Tanoto Professor, ECE

Jimmy Zhu

ABB Professor, ECE

Page 3: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

3 History of Microprocessors 3

Intel Quad Core Processor

Page 4: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

4 Transistor and Logic

~ 1V

Gate

n n

p

- - - - - -

Drain Source

VG > VTh On State ~ 1V

+ + + +

It is all about moving charges (electrons) !

Field Effect Transistor (FET) CMOS Invertor

“ 1 ” “ 0 ”

“ HIGH” “ LOW ”

Page 5: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

5 Energy Loss When Charging Gates

222

2

12

2

1CVCVRdtiE

Energy stored

C

R

-

Energy dissipated

i

V

Page 6: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

6 Joule Heating: Effect of Moving Charge

Results of Joule heating I2R Today’s Microprocessor

Page 7: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

7 Magnet: Magnetic Moment and Field

M

H

H

Magnetization M

Magnetic moment per unit volume

Page 8: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

8

Tunnel barrier

FeCo/MgO (~1nm) /FeCo

Magnetic electrode

m1

m2

Magnetic electrode

Magnetic Tunnel Junction

0 20 40 60 80 1000.0

0.5

1.0

1.5

2.0

2.5

Resis

tan

ce (

k

)

Data Bits

State “0” State “1”

Energy

transmission

incident

Page 9: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

9 Electron: Charge and Spin

-e

2

1S

J/T 10927.02

23-e

Bm

e

Bohr Magneton

Electron Spin: Angular momentum

Page 10: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

10

M

electron flow

M

v

electron flow

Moving Domain Wall with STT

I

Carnegie Mellon University

I

Spin Transfer Torque

Page 11: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

11 Pure Spin Current ?

• Electron spin is doing the work.

• Current is only providing a vehicle.

• Can we generate a charge-free spin current?

Page 12: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

12

Spin Current

Spin Hall Effect

Page 13: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

13 Pure Spin Current

自旋流

Charge

Charge-free Spin Current

Charge

Page 14: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

14 Pure Spin Current

Pt

Co/Ni

e-

Page 15: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

15 Spin Hall Effect

Page 16: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

16 mCell Design

I

r

-ww

r

Tunnel Barrier

Insulating Magnetic

Coupling Layer Free-Layer

Write-path

r

'r

w -w

4-Terminal

Schematic Symbol

: Low Resistance State rr -

Page 17: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

17 mCell Design

I

r

-ww

r

Free-Layer

Write-path

r

'r

w -w

4-Terminal

Schematic Symbol

Tunnel Barrier

Insulating Magnetic

Coupling Layer

: High Resistance State rr -

Page 18: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

18

+VPC -VPC Iw

Vm >0

Fanout (e.g. Inverter)

RHIGH RLOW

Page 19: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

19

+VPC -VPC Iw

Vm >0

Fanout (e.g. Inverter)

RHIGH RLOW

Page 20: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

20

+VPC -VPC Iw

Vm >0

Fanout (e.g. Inverter)

RHIGH RLOW

Page 21: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

21

+VPC -VPC Iw

Vm >0

Fanout (e.g. Inverter)

RHIGH RLOW

Page 22: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

22

Iw

+VPC -VPC

+VPC -VPC

Iw

Vm >0

Vm <0

Fanout (e.g. Inverter)

Page 23: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

23 State-Switching

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ene

rgy C

han

ge

E

(eV

)

Time t (ns)

J=5x106A/cm

2

Page 24: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

24 Power Clocking and Fanout

Fanout is series chain of write paths

pClock: Power and clocking combined

Negligible impact from load capacitance

A F X Y Z

0 -V/2

0 pClk2+

pClk1+ +V/2

+V/2

-V/2

pClk1-

pClk2-

pClk1-

A

F F

X Y Z

pClk2+ pClk2+

pClk2- pClk2- pClk2-

pClk1+

F

A

F F F

pClk2+

Page 25: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

25

Iw

+VPC -VPC

+VPC -VPC

Iw

Vm >0

Vm <0

Fanout (e.g. Inverter)

Page 26: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

26 Non-Volatile Storage

‘Free’ storage of state for every logic gate

Can enter/exit zero-power ‘sleep’ mode instantaneously

Overhead-free pipelining for super high throughput

Offsets modest switching speed

Example with alternating phases of pClock for each logic level

Page 27: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

27 mLogic

Exchanging input terminals inverts function for free

Complementary

MTJ Variation Robustness

Threshold

Logic Density

Push-Pull

Supply Variation Robustness

B

A

CBCABA

V-

V+

C B

B

A

A

BA

V-

V+ V+

BA

V+

A

B

A

B

Page 28: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

28 mLogic Bit-Serial Datapaths

Inherent logic-state storage eliminates costly memory

transfers for bit-serial computations

Bit-shifts (delays of bit-serial signals) are trivial

4A 32A 16A A 64A

96A 768A

24576A

1408A

46336A

92680A

92680*A / 217

≈ sin(2π/8)*A

+ + + +

Ex: Constant coefficient multiplication

Page 29: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

29 Example: 512 pt FFT w/ 16b Precision

Break into smaller DFTs with O(N) twiddle factor multiplications,

reusing multipliers and butterfly units

Simulation: 23 nJ/FFT and 6.5M FFT/s throughput @ 100mV pClock

6.7x lower energy and 1,700,000x higher throughput than a

published sub-threshold CMOS implementation

nJ/FFT VDD FFT/s # devices

Sub-Vt [ISSCC 2004] 155 0.350 3.8 627K

mLogic 23.1 0.100 6.5M 1.5M

Page 30: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

30 Noisy and Intermittent Power Supplies

Possible to detect and correct failures

Compatible with energy harvesting mechanisms

Requires less power regulation circuitry

pClock amplitude

is too low

pClock1

pClock2

output signals

Detected failure,

pulse repeated

Page 31: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

31

• All STT based metallic logic

• Nonvolatile logic states

• Ultra-low pulsed voltage

• Portable & energy-harvesting

• Rad-hard for space applications

• Very low cost manufacturing

• Scalable to 5nm CD

mLogic: All Spin Logic Circuits

Page 32: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

32

Experimental Demonstration

Page 33: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

33 mCell: Read Path

I

r

-ww

r

Free-Layer

Write-path

r

'r

w -w

4-Terminal

Schematic Symbol

Tunnel Barrier

Insulating Magnetic

Coupling Layer

Page 34: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

34

Sequence

Tanneal = 250°C Fe60Co20B20

BOTTOM

TOP

V. Sokalski et al. Applied Physics Letters. 101 (072411) (2012).

MTJ with PMA Electrodes

TOP

BOTTOM

Page 35: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

35

Ta Seedlayer Effect

V. Sokalski et al. IEEE Transactions on Magnetics, vol. 49, no. 7, 2013

Effect of Underlayer

- Annealing stability increased to 350°C. - TMR improvement by more than a factor of 2.

Page 36: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

36

Ta deposition rate is a significant factor in determining annealing stability…

Tanneal = 350°C

Ta Seedlayer Effect

Interface Anisotropy Approach

V. Sokalski et al. IEEE Transactions on Magnetics, vol. 49, no. 7, 2013

Page 37: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

37 mCell: Write Path

I

r

-ww

r

Free-Layer

Write-path

r

'r

w -w

4-Terminal

Schematic Symbol

Tunnel Barrier

Insulating Magnetic

Coupling Layer

Page 38: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

38 Co/Ni Multilayer for Write-Path

Ta

Si Substrate

Pt

Co/Ni

Ta

Co/Ni multilayer film stack

TaN

Page 39: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

39 Current- induced Domain Wall Motion Observation

10 µm

Co-planer Waveguide Test

Structure

(20m long, 50-250nm wide )

Domain Wall Nucleation

Page 40: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

40 Spin Hall Driven Domain Wall Motion

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

20

40

60

80

100

120

140current pulse width

10ns

30ns

50ns

Ave

rag

e D

om

ain

Wa

ll S

pe

ed

(m

/s)

Current Density J (x108 A/cm

2)

Ta (3nm)

Pt (2.5)

{Co(0.2)/Ni(0.3)}x2

Co(0.2) Ta (0.3)

TaN (6)

Page 41: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

41 Material Optimization

Ta (3nm)

Pt (2.5)

{Co(0.2)/Ni(0.3)}x2

Co(0.2) Ta (x)

TaN (6)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

60

80

100

120 J = 1.8x108 A/cm

2

Avera

ge D

om

ain

Wall

Speed (

m/s

)

Top Ta Layer Thickness (nm)

Page 42: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

42 mCell: Insulating Magnetic Oxide Layer

I

r

-ww

r

Free-Layer

Write-path

r

'r

w -w

4-Terminal

Schematic Symbol

Tunnel Barrier

Insulating Magnetic

Coupling Layer

EC-08, M. Moneck et al

Page 43: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

43 Co/Ni-Ta-FeCoB Coupling

Optimized Co/Ni-FeCoB coupling through Ta spacer for 4-terminal test structure

Maximum coupling without free layer

degradation

Page 44: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

44 Integrated Film Structure

Ta (0.5nm)

Page 45: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

45

mCells Structures

Fanout Structures

Kerr Structures

• Individual mCells fabricated – 500 nm, 1 µm widths – No magnetic oxide for now

• Vias created for electrical access to the functional layers

• Leads patterned from the vias out to probe pads for testing

Device Prototype

Page 46: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

46 Fabricated mCell

r

-ww

'r

e-

EC-08, M. Moneck et al.

Page 47: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

47 Switching Demonstration

Page 48: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

48 Overcome Pinning Effect

0.85 0.90 0.95 1.000

1

2

3

4

5

6 Current Pulse Width

10 ns

30 ns

50 ns

Nu

mbe

r of P

uls

e N

ee

ded

Current Density (x108 A/cm

2)

Page 49: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

49

-100

-50

0

50

100

Curr

ent

density [

MA

/cm

2]

0 10 20 30 40 50 60 70 80

1.3

1.4

1.5

1.6

Read-p

ath

resis

tance [

M

]

Reliable Digital Switching

Inject positive current observe low resistance state

Inject negative current observe high resistance state

Repeat!

Page 50: mLogic All Spin Logic Device and Circuits for Future Electronics · 2015-03-23 · Carnegie Mellon University 1 Carnegie Mellon University Jimmy Zhu 1, D. Bromberg , V. Sokalski2,

Carnegie Mellon University

50 Summary

mCells have been successfully fabricated with integrated

reader path and write path separated by a thin Ta interlayer.

A complete state switching can be accomplished with a

single current pulse through write path.

To enable fanout, we need to reduce switching current

density and increase tunneling MR.

mLogic is a promising technology for future electronic

applications.