Top Banner
Ryan ’Donnell Carnegie Mellon University O
48

Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Dec 23, 2015

Download

Documents

Alvin Cameron
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Ryan ’Donnell

Carnegie Mellon University

O

Page 2: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Ryan ’Donnell

Carnegie Mellon University

Page 3: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Part 1: Inverse Theorems

Part 2: Inapproximability

Part 3: The connection

Page 4: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.
Page 5: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.
Page 6: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Inverse Theorem for Linearity

Page 7: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Inverse Theorem for Linearity

Page 8: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Inverse Theorem for Linearity

Page 9: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Fourier Analysis

Page 10: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Inverse Theorem for Linearity

Page 11: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Inverse Theorem for Linearity

Page 12: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Inverse Theorem for Linearity

Page 13: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

“High-end inverse theorem”:

Pr [ .. ] ≥ 1−ϵ ⇒ f is (1−2ϵ)-correlated

with some χ ξ

“Low-end inverse theorem”:

Pr [ .. ] ≥ + ϵ ⇒ f is 2ϵ-correlated

with some χ ξ

Page 14: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

X

Y

Z

1

0

1

0

0

0

1

1

0

0

1

1

0

1

1

1

1

0

0

0

0

1

0

1

1

0

1

1

1

0

0

0

0

1

1

0

1

0

1

1

1

0

D = uniform on

0

0

0

0

1

1

1

0

1

1

1

0

,, ,

Page 15: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

X

Y

Z

1

0

1

0

0

0

1

1

0

0

1

1

0

1

1

1

1

0

0

0

0

1

0

1

1

0

1

1

1

0

0

0

0

1

1

0

1

0

1

1

1

0

= uniform on

0

0

0

0

1

1

1

0

1

1

1

0

,, ,

[Håstad’97]

=draw from w.p. 1−δ

unif. on all 8 w.p. δ

Page 16: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

[Håstad’97]

|ξ| = # nonzero coords in ξ

e.g.: ξ = (1,0,1,0,0,…,0,1), ξ⟨ , x⟩ = x1+x3+xn, |ξ| = 3

Page 17: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Håstad’s low-end inverse theorem:

Pr [ .. ] ≥ + η

⇒ f is 2η-correlated with some sparse χ ξ

Page 18: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Inverse Thm:

If f has o(1) correlation

w/ every O(1)-sparse χ ξ

[Håstad’97]

then p < + o(1).

(besides ξ ≠ 0)

“f is quasirandom”

Page 19: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Inverse Thm:

If f has o(1) correlation

w/ every O(1)-sparse χ ξ

[Håstad’97]

then p < + o(1).

-Verse Thm:

If f = χ ξ with |ξ| = 1 then p ≥ 1 − o(1).

Page 20: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.
Page 21: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.
Page 22: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Problem: 3-Sat

Input: I =

Alg’s goal: an assignment satisfying as

many constraints as possible.

3-OR

Page 23: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Algorithm must be “efficient ”

# steps ≤ nO(1)

Page 24: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

For input I,

Opt(I) = fraction of constraints

satisfied by best asgnmt

and with algorithm “Alg”,

Alg(I) = fraction of constraints

satisfied by Alg’s asgnmt

Page 25: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Fact:There is no efficient algorithm for

3-OR with the following guarantee:

if Opt(I) = 1

then Alg(I) = 1.

*

* unless P = NP.

Page 26: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Q: Can we have an efficient 3-OR alg. s.t.

if Opt(I) = 1

then Alg(I) ≥ 0.999999 ?

A: No.* The “PCP Theorem.”

[Arora-Safra’92,

Arora-Lund-Motwani-Sudan-

Szegedy’92]

Page 27: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Q: Can we have an efficient 3-OR alg. s.t.

if Opt(I) = 1

then Alg(I) ≥ + .000001 ?

A: No.* “Håstad’s 3-OR Inapproximability.”

[Håstad’97]

Page 28: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Q: Can we have an efficient 3-OR alg. s.t.

if Opt(I) = 1

then Alg(I) ≥ ?

A: Yes we can.

Choose a random asgnmt.[Johnson’74]

Page 29: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Problem: 3-XOR

Input: I =

overdetermined(?) linear sys. over with 3 vbls/eqn.

3-Lin

(mod 2)

Page 30: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Q: Can we have an efficient 3-XOR alg.

s.t.

if Opt(I) = 1

then Alg(I) = 1 ?

A: Yes. Gaussian Elimination.

Page 31: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Håstad’s 3-XOR Inapproximability Theorem:

There is no* efficient 3-XOR alg. s.t.

if Opt(I) ≥ 1−δ

then Alg(I) ≥ +η.

Remark: There is an efficient alg. with

Alg(I) ≥ always.

Pick either x ≡ 0 or x ≡ 1.

Page 32: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Max-Cut

Page 33: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Problem: Max-Cut

Input: I =

(“2-≠”)

Page 34: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

The Goemans-Williamson Algorithm:

[GW’94]

There is an efficient Max-Cut alg. s.t.

∀ ρ ≥ .844,

if Opt(I) = ρ

then Alg(I) ≥1

1½.844

Page 35: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Max-Cut Inapproximability Theorem:

There is no* * better efficient algorithm.

[Khot-Kindler-Mossel-O’04,

Mossel-O-Oleszkiewicz’05]

Page 36: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.
Page 37: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.
Page 38: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Inverse Thm:

[Håstad’97]

If f = χ ξ with |ξ| = 1 then p ≥ 1 − o(1).

then p < + o(1). If f is quasirandom

-Verse Thm:

Page 39: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

then p < + o(1). If f is quasirandom

If f = χ ξ with |ξ| = 1 then p ≥ 1 − o(1).

Inverse Thm.

Inapprox. There is no* efficient 3-XOR alg. s.t.

if Opt(I) ≥ 1 − o(1)

then Alg(I) ≥ + o(1).

Page 40: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

then p < + o(1). If f is quasirandom

If f = χ ξ with |ξ| = 1 then p = 1.

Inverse Thm.

Page 41: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

then p < + o(1). If f is quasirandom

If f = χ ξ with |ξ| = 1 then p = 1.

Inverse Thm.

Inapprox. There is no* efficient 3-OR alg. s.t.

if Opt(I) = 1

then Alg(I) ≥ + o(1).

Page 42: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

then p < + o(1). If f is quasirandom

If f = χ ξ with |ξ| = 1 then p = 1.

Inverse Thm.

Inapprox. There is no* efficient 3-OR alg. s.t.

if Opt(I) = 1

then Alg(I) ≥ + o(1).

Page 43: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

then p < + o(1). If f is quasirandom*

If f = χ ξ with |ξ| = 1 then p = ρ.

Inverse Thm.

(sharp: f = Majority)

“Majority Is Stablest”

[Mossel-O-Oleszkiewicz’05]

Page 44: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

then p < + o(1). If f is quasirandom*

If f = χ ξ with |ξ| = 1 then p = ρ.

Inverse Thm.

Inapprox. There is no* * efficient Max-Cut

(i.e., “ 2-≠ ”) alg. s.t.

if Opt(I) = ρ

then Alg(I) ≥ + o(1).

Page 45: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

then p < + o(1). If f is quasirandom*

If f = χ ξ with |ξ| = 1 then p = ρ.

Inverse Thm.

Inapprox. There is no* * efficient Max-Cut

(i.e., “ 2-≠ ”) alg. s.t.

if Opt(I) = ρ

then Alg(I) ≥ + o(1).

[one-semester course]

Page 46: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.
Page 47: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.
Page 48: Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.

Ask me about…

• Invariance Principle [MOO’05, Mossel’08]

(“CLT for quasirandom* polynomials”)

• Geometry of Gaussian Space [Borell’85]

• Unique Games Conjecture* * [Khot’02]

• Connections to Voting / Social Choice

( Influences [Banzhaf’65], Arrow’s Theorem [Kalai’02],

Ain’t Over Till It’s Over Theorem [MOO’05] )

• New inverse theorem & inapproximability

for the 3-Any problem, 1 vs. ⅝ [O-Wu’09]