Top Banner
Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi
18

Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi.

Mar 31, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi.

Mitochondria

PlasmaMembrane

NucleusLysosome

ER

Golgi

Page 2: Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi.
Page 3: Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi.
Page 4: Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi.
Page 5: Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi.

A variety of coat complexes participate in vesicle formation

Coat Locations G-proteinCOP-II ER ERGIC Sar1

COP-I(coatomer)

ERGIC ER; Golgi stacks;endocytic compartments

ARF1

clathrin +adaptors

TGN; cell surface (receptor-mediated endocytosis)

dynamin;ARF1

retromers (?) endosome Golgi

caveolin (?) cell surface

Page 6: Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi.

COP-II Coat Components

1) GDP-Sar1p binds to Sec12p2) GTP/GDP exchange 3) GTP-Sar1p anchors to

membrane

Protein SizeSar1p 21 kDaSec12p 43 kDaSec23-complex 400 kDa

Sec23p 85 kDaSec24p 105 kDa

Sec13-complex 700 kDaSec13p 34 kDaSec31p 150 kDa

“Sec” refers to secretory mutants in yeast develop by Randy Scheckman.

Coat Assembly

Page 7: Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi.

Monomeric G-proteins Regulate COP-II Coat Assembly

• Sar1 = ras-like G-protein• Sec12 = Sar1-specific GEF• Sec23 = Sar1-specific GAP

GEF = guanine nucleotide exchange factor

GAP = GTPase activating protein

Page 8: Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi.

COP-II Coat Components

1) GDP-Sar1p binds to Sec12p2) GTP/GDP exchange 3) GTP-Sar1p anchors to

membrane4) Sec23p-Sec24p complex

binds to GTP-Sar1p5) Sec13p-Sec31p complex

binds next

Protein SizeSar1p 21 kDaSec12p 43 kDaSec23-complex 400 kDa

Sec23p 85 kDaSec24p 105 kDa

Sec13-complex 700 kDaSec13p 34 kDaSec31p 150 kDa

“Sec” refers to secretory mutants in yeast.

Coat Assembly

Page 9: Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi.

Vesicle Formation• driven by coat assembly• cargo is concentrated

• SNAREs implicated• p24 family?

• ER resident proteins are excluded (Sec61) and/or retrieved (BiP, SNARE)

Page 10: Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi.

• GTP-Sar1p converted to GDP-Sar1p following vesicle release• activated by Sec23p• GDP-Sar1p dissociates• promotes coat disassembly

• uncoating exposes SNAREs • (SNAP receptor) • mediate docking and fusion• 2 types: vesicle and target

• v-SNARE binds t-SNARE

Transport Vesicles Uncoat and Dock with Destination Compartment

Page 11: Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi.

• t-SNARE (=syntaxin family) • 8 members in yeast• all in different compartment (except 2 on plasma membrane)

• each binds specific v-SNARE (eg., Sed5p/Sft1p)

• rab checks fit between SNAREs• monomeric G-protein• GTPase ‘locks’ complex

SNAREs Determine Specificity of Vesicle Docking

Page 12: Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi.

• NSF = NEM-Sensitive Fusion Protein (Sec18)• Sec18 required at all steps in secretory and

and endocytic pathways• NSF binding requires cytosolic factor

• SNAP (Soluble NSF Attachment Protein)

Membrane Fusion Machinery• SNAP binds to v/t-SNARE complex

• NSF only binds to SNARE-SNAP complex

• activation of NSF associated ATPase

• fusion mechanism not known

Page 13: Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi.

• vesicle formation at ER driven by COPII• COPII vesicles fuse to form ERGIC

• (ER-Golgi Intermediate Compartment)• aka VTC (Vesicular-Tubular Clusters)

• return of ER components?

Page 14: Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi.

• COP-I vesicles responsible for retrograde transport• KDEL signal (eg., BiP)

• analogous to COP-II

Page 15: Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi.

• ARF1 (ras-like G-protein) + 7 COPs (coat proteins) • coatomer (, , ', , , , and )

• GTP-ARF1 binds to membrane• anchored by myristic acid• ARF1 receptor unknown• brefeldin A (BFA) inhibits GEF

• membrane bound ARF1 recruits coatomer• budding and vesicle formation

• GTP hydrolysis leads to dissociation of coatomer• docking and fusion (SNARE, SNAP, and NSF)

COP I Components and Assembly

Page 16: Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi.

• COP-I also in Golgi• originally ascribed to both anterograde and retrograde transport

• targeting dictated by SNARES

BFA:• loss of Golgi• dilation of ER• Golgi markers in ER• rapidly reversible

• coats prevent premature fusion

Golgi and beyond?

Page 17: Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi.

Problems with Vesicular Transport Model

• requires additional t-SNARES or mechanisms for COPI bidirectionality

• no evidence for anterograde movement of COPI vesicles

• resident Golgi proteins demonstrate gradient-like distribution across cisternae

• large structures like algal scales or procollogen precursors

A recent rebirth of cisternae maturation model

Page 18: Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi.