Top Banner
Micro and Nanotechnology: An Overview Dr. Kristy M. Ainslie From Dr. Tejal Desai’s Lab, UC San Francisco June 20, 2007
21

Micro and Nanotechnology: An Overview Dr. Kristy M. Ainslie From Dr. Tejal Desai’s Lab, UC San Francisco June 20, 2007.

Jan 11, 2016

Download

Documents

Derek Johnston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Micro and Nanotechnology: An Overview Dr. Kristy M. Ainslie From Dr. Tejal Desai’s Lab, UC San Francisco June 20, 2007.

Micro and Nanotechnology: An Overview

Dr. Kristy M. AinslieFrom Dr. Tejal Desai’s Lab, UC San Francisco

June 20, 2007

Page 2: Micro and Nanotechnology: An Overview Dr. Kristy M. Ainslie From Dr. Tejal Desai’s Lab, UC San Francisco June 20, 2007.

Red blood cells(~7-8 m)

Fly ash~ 10-20m Human hair

~ 60-120m wide

Ant~ 5 mm

Dust mite

200 m

ATP synthase

~10 nm diameter

0.1 nm

1 nanometer (nm)

0.01 m10 nm

0.1 m100 nm

1,000 nanometers = 1 micrometer (mm)

0.01 mm10 m

0.1 mm100 m

1,000,000 nanometers = 1 millimeter (mm)

1 cm10 mm

10-2 m

10-3 m

10-4 m

10-5 m

10-6 m

10-7 m

10-8 m

10-9 m

10-10 mAtoms of siliconspacing 0.078 nm

DNA~2-1/2 nm diameter

The Scale of Things – Nanometers and More

Visib

leVi

sible

Infra

red

Infra

red

Ultra

viole

tUl

travio

let

Micr

owav

eM

icrow

ave

Soft

x-ra

ySo

ft x-

ray

Micro-technology“The Micro World”

Nanotechnology“The Nano World”

Head of a pin1-2 mm

Page 3: Micro and Nanotechnology: An Overview Dr. Kristy M. Ainslie From Dr. Tejal Desai’s Lab, UC San Francisco June 20, 2007.

Nanoscale Fits the Molecular World

One 5’5” Student (our example molecule)One 5’5” Student (our example molecule)

A 8’ desk? A 8’ desk?

A 2’ 6” desk?A 2’ 6” desk?

Or a 5’ desk?Or a 5’ desk?

Compared to what we can see, an atom scale is about a million times smaller!Imagine a desk a million times too big!Imagine a desk a million times too big!

Page 4: Micro and Nanotechnology: An Overview Dr. Kristy M. Ainslie From Dr. Tejal Desai’s Lab, UC San Francisco June 20, 2007.

Nanomaterials Have More Atoms on the Surface

Materials of the micro (1x10-6m) and especially nano (1x10-9m) size have more atom exposed on the outside then inside

Volume = 18x19x1 nmVolume = 18x19x1 nm33 or or15x8x16 atoms = 1920 atoms 15x8x16 atoms = 1920 atoms

totaltotal

976 or 51% of the atoms are 976 or 51% of the atoms are at the surfaceat the surface

NanomaterialNanomaterial

Volume = 3x3x0.7 Volume = 3x3x0.7 mm33 or or~4 million atoms total~4 million atoms total

976 or 4% of the atoms are at 976 or 4% of the atoms are at the surfacethe surface

Micro-scaled MaterialMicro-scaled MaterialA 1x1x1 cm1x1x1 cm33 cube will have

0.00072%0.00072% of the atoms

exposed to the surface

Page 5: Micro and Nanotechnology: An Overview Dr. Kristy M. Ainslie From Dr. Tejal Desai’s Lab, UC San Francisco June 20, 2007.

Surface Atoms Interact more with the Environment

Energy comes from the environment to affect molecular nature. Energy comes from the environment to affect molecular nature. Since more molecules are on the surface, the affect is more Since more molecules are on the surface, the affect is more

pronounced.pronounced.

TemperatureTemperature

Heat

Cold

LightLight

The forms of energy that affect us in the environment can affect The forms of energy that affect us in the environment can affect molecules.molecules.

SoundSound

Page 6: Micro and Nanotechnology: An Overview Dr. Kristy M. Ainslie From Dr. Tejal Desai’s Lab, UC San Francisco June 20, 2007.

Nanotechnology has mechanical applications

Quantum corral of 48 iron atoms on copper

surfacepositioned one at a

time with an STM tipCorral diameter 14 nm

MicroElectroMechanical (MEMS) devices10 -100 m wide

Carbon buckyball~1 nm diameter

Self-assembled,Nature-inspired structure

Many 10s of nm

Carbon nanotube~1.3 nm diameter

Page 7: Micro and Nanotechnology: An Overview Dr. Kristy M. Ainslie From Dr. Tejal Desai’s Lab, UC San Francisco June 20, 2007.

A Stretched Out Buckey Ball Becomes a NanotubeFullerenes (aka buckyballs)• Discovered in 1985 at the University of Sussex and Rice University

• Named after Richard Buckminster Fuller•Geodesic domes (Epcot Center)

• Made entirely of carbon, in the form of a hollow sphere, ellipsoid, or tube.

• Used for microelectrics, sensors and composite materials

Page 8: Micro and Nanotechnology: An Overview Dr. Kristy M. Ainslie From Dr. Tejal Desai’s Lab, UC San Francisco June 20, 2007.

MEMs: MMicroEElectroMMechanical SSystems

• High proportion of atom on the surface changes characteristics– electrostatics (static electricity) – wetting

• Can be fabricated with semiconductor fabrication technology (microchips)• Made of silicon, polymer or other metals (e.g. gold, nickel, platinum)• Used for sensors, computer processors, an inkject printer

Page 9: Micro and Nanotechnology: An Overview Dr. Kristy M. Ainslie From Dr. Tejal Desai’s Lab, UC San Francisco June 20, 2007.

Quantum Dot Colors Vary with Size

• Semiconductor based material• Confines electron motion in three

directions• Releases discrete quantized energy • Used in LEDs, sensing, and lasers

Page 10: Micro and Nanotechnology: An Overview Dr. Kristy M. Ainslie From Dr. Tejal Desai’s Lab, UC San Francisco June 20, 2007.

Nanotechnology Includes Nanomaterials

• Any material that has nano-scale features are termed a nanomaterial

NanowiresNanowires

NanoparticlesNanoparticles

NanomembranesNanomembranes

Nano-othersNano-others

Page 11: Micro and Nanotechnology: An Overview Dr. Kristy M. Ainslie From Dr. Tejal Desai’s Lab, UC San Francisco June 20, 2007.

In Addition, Nanotechnology has biomedical applications

Kinesin walks on Microtubule

~100 m

Lab on a ChipTechnology on the micron

scale

BiosensorsDetection from DNA to

Proteins10nm-100 m

Therapeutic Drug Delivery Devices10nm-100 m

DNA to Bind and Detect Proteins

10nm-100 m

Page 12: Micro and Nanotechnology: An Overview Dr. Kristy M. Ainslie From Dr. Tejal Desai’s Lab, UC San Francisco June 20, 2007.

DNADNAAtomsAtoms

Small MoleculesSmall Molecules

ProteinsProteinsVirusesViruses

BacterialBacterialCellsCells

100 m 1x10-4 m

10 m

1 m

100 nm

10 nm

1 nm

1 Å

1x10-5 m

1x10-6 m

1x10-7 m

1x10-8 m

1x10-9 m

1x10-10 m

The Scale of the Biological World

Plant & AnimalPlant & AnimalCellsCells

Page 13: Micro and Nanotechnology: An Overview Dr. Kristy M. Ainslie From Dr. Tejal Desai’s Lab, UC San Francisco June 20, 2007.

Microfluidics are Microscale Piping

• Smaller piping means smaller volumes of fluids are needed

• The area the fluid is moving in is so small, that the liquid does not mix

Page 14: Micro and Nanotechnology: An Overview Dr. Kristy M. Ainslie From Dr. Tejal Desai’s Lab, UC San Francisco June 20, 2007.

Biosensors Detect Analytes from Bodily Fluids

• Biosensors use antibody or other specific binding molecules to capture the substance of interest

• Output can be light, movement, an electrical signal

Page 15: Micro and Nanotechnology: An Overview Dr. Kristy M. Ainslie From Dr. Tejal Desai’s Lab, UC San Francisco June 20, 2007.

Lab on a Chip: Diagnosis at the Hospital Bedside

• Lab on a chip integrate nanomaterials, microfluidics, biosensors, microelectrics, and biochemistry

Page 16: Micro and Nanotechnology: An Overview Dr. Kristy M. Ainslie From Dr. Tejal Desai’s Lab, UC San Francisco June 20, 2007.

Therapeutic Delivery of Drugs Can Reduce Side-effects

• Small scale “pills” can be taken up by cells• Adding of antibodies can be used to target sick cells• Administered through IV, the skin, inhaled, orally

Page 17: Micro and Nanotechnology: An Overview Dr. Kristy M. Ainslie From Dr. Tejal Desai’s Lab, UC San Francisco June 20, 2007.

Micro and Nanotechnology can be used for Tissue Engineering

• To grow a cell needs to adhere and spread• Nanomaterials can navigate cell growth• Cells can adhere to nanomaterials more strongly

Page 18: Micro and Nanotechnology: An Overview Dr. Kristy M. Ainslie From Dr. Tejal Desai’s Lab, UC San Francisco June 20, 2007.

Nanomaterials can Change Cell Behavior

• Stem cells can be grown on nanomaterials• The differentiation of the stem cell can be changed with nanomaterial

interactions

Page 19: Micro and Nanotechnology: An Overview Dr. Kristy M. Ainslie From Dr. Tejal Desai’s Lab, UC San Francisco June 20, 2007.

Review of Micro and Nanotechnology

Things on the nanoscale are a billion times smaller then a meter-stick.

Things on the microscale are a million times smaller then a meter-stick.

Higher % of molecules on the surface leads to different properties.

Micro- and nano-scale materials include Buckeyballs and nanotubes

Micro and Nanotechnology are on the scale of the biological world.

These materials can help treat, diagnose and research diseases.

Page 20: Micro and Nanotechnology: An Overview Dr. Kristy M. Ainslie From Dr. Tejal Desai’s Lab, UC San Francisco June 20, 2007.

References

• http://www.science.doe.gov/bes/scale_of_things.html

• Scale of Biological World

– http://www.cimaging.net

– http://library.thinkquest.org

– http://www.becomehealthynow.com

– http://efl.htmlplanet.com

– http://www.sciencemusings.com

– http://i86.photobucket.com/

– http://www.3dchem.com/

– http://depts.washington.edu

– http://www.scharfphoto.com

– http://www.computing.dcu.ie

– http://www.p450.kvl.dk

– http://upload.wikimedia.org/

– http://www.genelex.com

– http://www.csb.yale.edu/

– http://serc.carleton.edu/

– http://www.nanosensors.co.kr/

• http://www.manhattanchurch.org/

• Biomedical Applications

– http://monet.unibas.ch

– https://buffy.eecs.berkeley.edu

– http://www.naclgroup.org

• http://nanopedia.case.edu/image/build.buckyball.jpg

• http://content.answers.com/• http://www6.ufrgs.br/• MEMs

– http://www.aero.org/– http://www.devicelink.com/– www.cs.duke.edu – http://mems.nist.gov/– http://web.mit.edu/

• Quantum Dots– http://www.imem.cnr.it– www.greenspine.ca– http://www.evidenttech.com/ – http://z.about.com/

• Nanomaterials– www.cvd.louisville.edu – http://www.micronova.fi/– www.itmweb.com/ – http://www.worldhealth.net– http://usinfo.state.gov– http://www.meliorum.com– http://www.innovations-report.com– http://nanoprism.net– http://genomicsgtl.energy.gov/– http://cjmems.seas.ucla.edu– http://www.ceic.unsw.edu.au– http://www.chem.ufl.edu– http://www.mri.psu.edu/– http://www.laser-zentrum-hannover.de

Page 21: Micro and Nanotechnology: An Overview Dr. Kristy M. Ainslie From Dr. Tejal Desai’s Lab, UC San Francisco June 20, 2007.

References

• Biosenors

– http://www.sensortec.dk

– http://www.primidi.com

– http://www.primidi.com

– http://www.media.mit.edu

– http://www.physics.mcgill.ca

– http://www.schaefer-tec.com

– http://www.bme.cornell.edu

• Therapeutic Drug Delivery

– http://www.azonano.com

– http://www.sigmaaldrich.com

– http://www.cfdrc.com

– http://www.pevion.com

– http://www.s3.kth.se

• Stem Cells

– http://www.sciencedaily.com

– http://web.uconn.edu

• Lab on a chip

– http://www.medgadget.com

– http://images.vertmarkets.com

– http://www.berkeley.edu

– http://www.pi2.uni-stuttgart.de

– http://www.i-math.com.my

• Microfluidics

– http://www.medgadget.com

– http://www.niherst.gov.tt

– http://www.bme.utexas.ed

– uxlink.rsc.org

– http://www.ichf.edu.pl

– http://www.mrsec.harvard.edu

– http://www.leelab.org