Top Banner
Prof. Albert Espinoza Mechanical Engineering Department Polytechnic University of Puerto Rico Spring 2015
18
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ME 2220_SP15_LEC04 - Position Analysis

Prof. Albert Espinoza

Mechanical Engineering Department

Polytechnic University of Puerto Rico

Spring 2015

Page 2: ME 2220_SP15_LEC04 - Position Analysis

Position Representation: Complex Numbers

To convert from polar to Cartesian form, use the Euler identity:

Polar form: j

A AR R e@

ˆ ˆCartesian form: cos sin + cos sin A A x y A AR i R j R jR R jR

cos sinje j

Polar complex number notation makes vector representation more compact

2

Page 3: ME 2220_SP15_LEC04 - Position Analysis

Coordinate Conversion (Cartesian to Polar)

Polar complex number notation makes vector representation more compact

2 2

arctan

A x y

y

x

R R R

R

R

ˆ ˆCartesian form: cos sin + cos sin A A x y A AR i R j R jR R jR

Polar form: j

A AR R e@

3

Page 4: ME 2220_SP15_LEC04 - Position Analysis

Position – Fixed Pivot (Pure Rotation)

4

Position in XY coordinates

Position

𝑅𝑃 = 𝑝𝑒𝑗𝜃 = 𝑝 cos 𝜃 + 𝑗 sin 𝜃

Page 5: ME 2220_SP15_LEC04 - Position Analysis

Types of Motion

Pure Translation

• All points have same displacement

Pure Rotation

• Different points have different displacement

Complex Motion

• Simultaneous translation and rotation

5

Page 6: ME 2220_SP15_LEC04 - Position Analysis

Chasles’ Theorem

Any displacement of a rigid body is equivalent to the sum of a translation of any one point on the body and a rotation of the body about an axis through that point.

Total displacement = translation component + rotation component

B A A A B AR R R

6

Page 7: ME 2220_SP15_LEC04 - Position Analysis

Position Difference (Displacement)

7

Position Difference Equation – Two points in the same body

𝑅𝐵𝐴 = 𝑅𝐵 − 𝑅𝐴

𝑅𝐵 = 𝑅𝐴 + 𝑅𝐵𝐴

Same equation represents:

Position Difference

Relative Position

Page 8: ME 2220_SP15_LEC04 - Position Analysis

Coordinate Systems

• Coordinate Systems:

GCS = Global Coordinate System, (X, Y)

LNCS = Local Non-Rotating Coordinate System, (x, y)

LRCS = Local Rotating Coordinate System, (x’, y’)

x’

y’

8

Page 9: ME 2220_SP15_LEC04 - Position Analysis

If the position of A is defined with respect to (wrt) axes x-y, and it is desired to transform its coordinates to the global (inertial) set of axes (X-Y), we use the following equations: Or in matrix form:

Coordinate Transformation

It is often necessary to transform the coordinates of a point defined in one set of axes (x-y) in another (X-Y).

𝑅𝑋 = 𝑅𝑥 cos 𝛿 − 𝑅𝑦 sin 𝛿

𝑅𝑌 = 𝑅𝑥 sin 𝛿 + 𝑅𝑦 cos 𝛿

𝑅𝑋

𝑅𝑌=

cos 𝛿 −sin 𝛿sin 𝛿 cos 𝛿

𝑅𝑥

𝑅𝑦

9

Page 10: ME 2220_SP15_LEC04 - Position Analysis

10

Page 11: ME 2220_SP15_LEC04 - Position Analysis

Position Analysis of Fourbar Linkage

The fourbar linkage provides 1 DOF (Mobility=1)

Link 2 is normally the input link

Link 4 is normally the output link

All angles are measured w.r.t. +x axis and are positive if CCW

11

Page 12: ME 2220_SP15_LEC04 - Position Analysis

Possible Solutions of Fourbar Linkage

There are two possible closed-form solutions for θ3 and θ4 for a given θ2 (open and crossed configurations)

Crossed vs Open: Assuming that link 2 is in the first quadrant, a Grashof linkage is defined as crossed if the two links adjacent to the shortest link cross one another and open is they don’t cross.

12

Page 13: ME 2220_SP15_LEC04 - Position Analysis

Vector Loop – Fourbar Linkage

2 3 4 1 0R R R R

32 4 1 0jj j j

ae be ce de

cos sinje j

2 2 3 3 4 4 1 1cos sin cos sin cos sin cos sin 0 a j b j c j d j

3 2 4

3 2 4

cos cos cos

sin sin sin

b a c d

b a c

2 22 2 2

3 3 2 4 2 4sin cos sin sin cos cosb a c a c d

2 22

2 4 2 4sin sin cos cosb a c a c d

2 2 2 2

2 4 2 4 2 42 cos 2 cos 2 sin sin cos cosb a c d ad cd ac

2 2 2 2

1 2 3 2

d d a b c dK K K

a c ac

1 4 2 2 3 2 4 2 4cos cos cos cos sin sinK K K

2 1 2 2 3

2

1 2 2 3

cos cos

2sin

1 cos

A K K K

B

C K K K

4

42 4

2 tan2

sin ;

1 tan2

2 4

42 4

1 tan2

cos

1 tan2

2 4 4tan tan 02 2

A B C

1,2

2

4

42arctan

2

B B AC

A

13

Page 14: ME 2220_SP15_LEC04 - Position Analysis

Vector Loop – Fourbar (Continued)

2 2 3 3 4 4 1 1cos sin cos sin cos sin cos sin 0 a j b j c j d j

4 2 3

4 2 3

cos cos cos

sin sin sin

c a b d

c a b

2 22 2 2

4 4 2 3 2 3sin cos sin sin cos cos c a b a b d

2 22

2 3 2 3sin sin cos cos c a b a b d

2 2 2 2

2 3 2 3 2 32 cos 2 cos 2 sin sin cos cos c a b d ad bd ab

2 2 2 2

1 4 5 2

d d c d a bK K K

a b ab

1 3 4 2 5 2 3 2 3cos cos cos cos sin sin K K K

2 1 4 2 5

2

1 4 2 5

cos cos

2sin

1 cos

D K K K

E

F K K K

3

32 3

2 tan2

sin ;

1 tan2

2 3

32 3

1 tan2

cos

1 tan2

2 3 3tan tan 02 2

D E F

1,2

2

3

42arctan

2

E E DF

D

Using a similar approach for θ3:

The ‘minus’ solutions represent the open config. and the ‘plus’ solutions the crossed config. 14

Page 15: ME 2220_SP15_LEC04 - Position Analysis

Position Analysis of Fourbar Linkage

Linear position of linkage moving joints:

𝑅𝐴 = 𝑎𝑒𝑗𝜃2 = 𝑎 cos 𝜃2 + 𝑗 sin 𝜃2

𝑅𝐵𝐴 = 𝑏𝑒𝑗𝜃3 = 𝑏 cos 𝜃3 + 𝑗 sin 𝜃3

𝑅𝐵 = 𝑅𝐴 + 𝑅𝐵𝐴 𝑂𝑅 𝑐𝑒𝑗𝜃4 + 𝑅𝑂4= 𝑐 cos 𝜃4 + 𝑗 sin 𝜃4 + 𝑑

15

Page 16: ME 2220_SP15_LEC04 - Position Analysis

Position of any Point in a Linkage

The position of any point in a linkage requires a simple vector calculations

Position of point P is given as:

Position of point S:

Position of point U:

P A PAR R R

3 32 ( )

jjae pe

2 2 3 3 3 3cos sin cos( ) sin( ) a j p j

PR

PAR

AR

3 Relative angle between vector and PA BAR R

2 2( )jS se R

2 2 2 2cos( ) sin( ) s j

4 4 4 4cos( ) sin( ) u j d

4 4

4

( )jU Oue R R

16

Page 17: ME 2220_SP15_LEC04 - Position Analysis

Example: Fourbar Linkage

1 2 3 4 2 3Given: 6, 2, 7, 9, 30 , R 6, 30

Determine: The Grashof condition

The possible solutions for both open and crossed configurations

The x and y coord

PL L L L

inates of points , , and (w.r.t. GCS) for the open configurationA B P

17

3

Page 18: ME 2220_SP15_LEC04 - Position Analysis

18