Top Banner
Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska- Lincoln http://www.math.unl.edu/~gled der1 [email protected] Supported by NSF grant DUE 0536508
34

Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 [email protected] Supported.

Dec 21, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

Mathematical Modeling in Population Dynamics

Glenn Ledder

University of Nebraska-Lincoln

http://www.math.unl.edu/~gledder1

[email protected]

Supported by NSF grant DUE 0536508

Page 2: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

Mathematical Model

Math

ProblemInput Data Output Data

Key Question:

What is the relationship between input

and output data?

Page 3: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

Endangered Species

Mathematical

ModelControl

Parameters

Future

Population

Fixed

Parameters

Model Analysis:

For a given set of fixed parameters, how does the future population depend on the control parameters?

Page 4: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

Mathematical Modeling

Real

World

Conceptual

Model

Mathematical

Model

approximation derivation

analysisvalidation

A mathematical model represents a simplified view of the real world.

• We want answers for the real world.

• But there is no guarantee that a model will give the right answers!

Page 5: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

Example: Mars Rover

Real

World

Conceptual

Model

MathematicalModel

approximation derivation

analysisvalidation

• Conceptual Model:

Newtonian physics

• Validation by many experiments

• Result:

Safe landing

Page 6: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

Example: Financial Markets

Real

World

Conceptual

Model

approximation derivation

analysisvalidation

• Conceptual Model:Financial and credit markets are independentFinancial institutions are all independent

• Analysis:Isolated failures and acceptable risk

• Validation??

• Result: Oops!!

MathematicalModel

Page 7: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

Forecasting the Election

Polls use conceptual models• What fraction of people in each age group vote?• Are cell phone users “different” from landline users?

and so on

http://www.fivethirtyeight.com• Uses data from most polls• Corrects for prior pollster results• Corrects for errors in pollster conceptual models

Validation?

Most states within 2%!

Page 8: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

General Predator-Prey ModelLet x be the biomass of prey.

Let y be the biomass of predators.

Let F(x) be the prey growth rate.

Let G(x) be the predation per predator.

Note that F and G depend only on x.

yxGxFdt

dx)()( myyxGc

dt

dy )(

c, m : conversion efficiency and starvation rate

Page 9: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

Simplest Predator-Prey Model

Let x be the biomass of prey.

Let y be the biomass of predators.

Let F(x) be the prey growth rate.

Let G(x) be the predation rate per predator.

F(x) = rx :

Growth is proportional to population size.

G(x) = sx :

Predation is proportional to population size.

Page 10: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

Lotka-Volterra model

x = prey, y = predator

x′ = r x – s x y

y′ = c s x y – m y

Page 11: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

Lotka-Volterra dynamics

x = prey, y = predator

x′ = r x – s x y

y′ = c s x y – m y

Predicts oscillations of varying amplitude

Predicts impossibility of predator extinction.

Page 12: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

• Logistic Growth– Fixed environment capacity

K

xrxxF 1)(

K

r

X

XF )(

Relative growth rate

Page 13: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

Logistic model

x = prey, y = predator

x′ = r x (1 – — ) – s x y

y′ = c s x y – m y

xK

Page 14: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

Logistic dynamics

x = prey, y = predator

x′ = r x (1 – — ) – s x y

y′ = c s x y – m y

Predicts y → 0 if m too large

xK

Page 15: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

Logistic dynamics

x = prey, y = predator

x′ = r x (1 – — ) – s x y

y′ = c s x y – m y

Predicts stable x y equilibrium if m is small enough

xK

OK, but real systems sometimes oscillate.

Page 16: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

Predation with Saturation

• Good modeling requires scientific insight. • Scientific insight requires observation.• Predation experiments are difficult to do in the real world.

• Bugbox-predator allows us to do the experiments in a virtual world.

Page 17: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

Predation with Saturation

The slope decreases from a maximum at x = 0

to 0 for x → ∞.

Page 18: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

Let s be search rate

Let G(x) be predation rate per predator

Let f be fraction of time spent searching

Let h be the time needed to handle one prey

G = f s x and f + h G = 1

G = —–––– = —–––s x

1 + sh x

q x

a + x

• Holling Type 2 consumption– Saturation

Page 19: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

Holling Type 2 model

x = prey, y = predator

x′ = r x (1 – — ) – —–––

y′ = —––– – m y

xK

qx ya + x

c q x ya + x

Page 20: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

Holling Type 2 dynamics

x = prey, y = predator

x′ = r x (1 – — ) – —–––

y′ = —––– – m y

Predicts stable x y equilibrium if m is small enough and stable limit cycle if m is even smaller.

xK

qx ya + x

c q x ya + x

Page 21: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

Simplest Epidemic Model

Let S be the population of susceptibles.

Let I be the population of infectives.

Let μ be the disease mortality.

Let β be the infectivity.

No long-term population changes.

S′ = − βSI:

Infection is proportional to encounter rate.

I′ = βSI − μI :

Page 22: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

Salton Sea problem• Prey are fish; predators are birds.• An SI disease infects some of the fish.• Infected fish are much easier to catch than

healthy fish.• Eating infected fish causes botulism

poisoning.

C__ and B__, Ecol Mod, 136(2001), 103:

1.Birds eat only infected fish.

2.Botulism death is proportional to bird population.

Page 23: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

CB model

S′ = rS (1− ——) − βSI

I′ = βSI − —— − μI

y′ = —— − my − py

S + IK

qIya + I

cqIya + I

Page 24: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

CB dynamics

1. Mutual survival possible.

2. y→0 if m+p too big.

3. Limit cycles if m+p too small.

4. I→0 if β too small.

S′ = rS (1− ——) − βSI

I′ = βSI − —— − μI

y′ = —— − my − py

S + IK

qIya + I

cqIya + I

Page 25: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

CB dynamics

1. Mutual survival possible.

2. y→0 if m+e too big.

3. Limit cycles if m+e too small.

4. I→0 if β too small.

BUT

5. The model does not allow the predator to survive without the disease!

DUH!

The birds have to eat healthy fish too!

Page 26: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

REU 2002 corrections

• Flake, Hoang, Perrigo,

Rose-Hulman Undergraduate Math Journal

Vol 4, Issue 1, 2003

1. The predator should be able to eat healthy fish if there aren’t enough sick fish.

2. Predator death should be proportional to consumption of sick fish.

Page 27: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

CB model

S′ = rS (1− ——) − βSI

I′ = βSI − —— − μI

y′ = —— − my − py

S + IK

qIya + I

cqIya + I

Changes needed:

1.Fix predator death rate.

2.Add predation of healthy fish.

3.Change denominator of predation term.

Page 28: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

FHP model

S′ = rS (1− ——) − ———— − βSI

I′ = βSI − ———— − μI

y′ = ——————— − my

S + IK

cqvSy + cqIy − pqIya + I + vS

qIya + I + vS

qvSya + I + vS

Key Parameters:

mortality virulencecq

mM

K

R 0

Page 29: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

FHP dynamics

p > c p < cp > c p < c

Page 30: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

FHP dynamics

Page 31: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

FHP dynamics

Page 32: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

FHP dynamics

Page 33: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

FHP dynamics

Page 34: Mathematical Modeling in Population Dynamics Glenn Ledder University of Nebraska-Lincoln gledder1 gledder@math.unl.edu Supported.

FHP dynamics

p > c p < cp > c p < c