Top Banner
Mathematical foundations of DFT Eric CANCES Ecole des Ponts and INRIA, Paris, France Los Angeles, July 21st, 2014
48

Mathematical foundations of DFT

Oct 04, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Mathematical foundations of DFT

Mathematical foundations of DFT

Eric CANCES

Ecole des Ponts and INRIA, Paris, France

Los Angeles, July 21st, 2014

Page 2: Mathematical foundations of DFT

Outline of the talk 2.

1 - Electronic hamiltonians

2 - Constrained search

3 - Kohn-Sham and extended Kohn-Sham models

4 - Thermodynamic limits

Page 3: Mathematical foundations of DFT

1 - Electronic hamiltonians

HN = −N∑i=1

1

2∇2

ri−

N∑i=1

M∑k=1

zk|ri −Rk|

+∑

1≤i<j≤N

1

|ri − rj|= T + Vne + Vee

Atomic units: ~ = 1, e = 1, me = 1, 4πε0 = 1

N : number of electronsM : number of nucleizk ∈ N : charge of the kth nucleusRk ∈ R3 : position of the kth nucleus

ri : position of the ith electrons

Page 4: Mathematical foundations of DFT

1 - Electronic hamiltonians 4.

N -electron wavefunctions and density matrices

• HN : N -electron state space

HN =

N∧H1 H1 = L2(R3,C2)

Page 5: Mathematical foundations of DFT

1 - Electronic hamiltonians 4.

N -electron wavefunctions and density matrices

• HN : N -electron state space

HN =

N∧H1 H1 = L2(R3,C) (we omit for simplicity)

Page 6: Mathematical foundations of DFT

1 - Electronic hamiltonians 4.

N -electron wavefunctions and density matrices

• HN : N -electron state space

HN =

N∧H1 H1 = L2(R3,C) (we omit for simplicity)

Ψ ∈ HN ⇔

Ψ(· · · , rj, · · · , ri, · · · ) = −Ψ(· · · , ri, · · · , rj, · · · ) ∈ C

〈Ψ|Ψ〉 :=

∫(R3)N

|Ψ(r1, · · · , rN)|2 dr1 · · · drN <∞

Page 7: Mathematical foundations of DFT

1 - Electronic hamiltonians 4.

N -electron wavefunctions and density matrices

• HN : N -electron state space

HN =

N∧H1 H1 = L2(R3,C) (we omit for simplicity)

Ψ ∈ HN ⇔

Ψ(· · · , rj, · · · , ri, · · · ) = −Ψ(· · · , ri, · · · , rj, · · · ) ∈ C

〈Ψ|Ψ〉 :=

∫(R3)N

|Ψ(r1, · · · , rN)|2 dr1 · · · drN <∞

•WN : set of normalized wavefunctions with finite energy (pure states)

WN ={

Ψ ∈ HN | 〈Ψ|Ψ〉 = 1, 〈Ψ|T |Ψ〉 <∞}, T = −

N∑i=1

1

2∇2

ri

Page 8: Mathematical foundations of DFT

1 - Electronic hamiltonians 4.

N -electron wavefunctions and density matrices

• HN : N -electron state space

HN =

N∧H1 H1 = L2(R3,C) (we omit for simplicity)

Ψ ∈ HN ⇔

Ψ(· · · , rj, · · · , ri, · · · ) = −Ψ(· · · , ri, · · · , rj, · · · ) ∈ C

〈Ψ|Ψ〉 :=

∫(R3)N

|Ψ(r1, · · · , rN)|2 dr1 · · · drN <∞

•WN : set of normalized wavefunctions with finite energy (pure states)

WN ={

Ψ ∈ HN | 〈Ψ|Ψ〉 = 1, 〈Ψ|T |Ψ〉 <∞}, T = −

N∑i=1

1

2∇2

ri

• DN : set of density operators with finite energy DN (mixed states)

DN :=

{Γ linear op. onHN | Γ† = Γ, 0 ≤ Γ ≤ 1, Tr(Γ) = 1, Tr(T Γ) <∞

}

Page 9: Mathematical foundations of DFT

1 - Electronic hamiltonians 5.

The electronic problem for a fixed nuclear configuration {zk,Rk}1≤k≤M

HN = −N∑i=1

1

2∇2

ri−

N∑i=1

M∑k=1

zk|ri −Rk|

+∑

1≤i<j≤N

1

|ri − rj|self-adjoint op. onHN

Theorem (Zhislin ’61): if N ≤M∑k=1

zk (neutral or positively charged sys-

tem), thenσ(HN) = {E0 ≤ E1 ≤ E2 · · · } ∪ [Σ,+∞).

0

Excited statesGround state

Essential spectrum

Ε

Σ

Page 10: Mathematical foundations of DFT

1 - Electronic hamiltonians 5.

The electronic problem for a fixed nuclear configuration {zk,Rk}1≤k≤M

HN = −N∑i=1

1

2∇2

ri−

N∑i=1

M∑k=1

zk|ri −Rk|

+∑

1≤i<j≤N

1

|ri − rj|self-adjoint op. onHN

The bound states are obtained by solving the Schrödinger equation

HNΨ = EΨ, Ψ ∈ WN

Page 11: Mathematical foundations of DFT

1 - Electronic hamiltonians 5.

The electronic problem for a fixed nuclear configuration {zk,Rk}1≤k≤M

HN = −N∑i=1

1

2∇2

ri−

N∑i=1

M∑k=1

zk|ri −Rk|

+∑

1≤i<j≤N

1

|ri − rj|self-adjoint op. onHN

The bound states are obtained by solving the Schrödinger equation

HNΨ = EΨ, Ψ ∈ WN

The ground state is obtained by solving the minimization problem

E0 = minΨ∈WN

〈Ψ|HN |Ψ〉 (pure-state formulation)

Page 12: Mathematical foundations of DFT

1 - Electronic hamiltonians 5.

The electronic problem for a fixed nuclear configuration {zk,Rk}1≤k≤M

HN = −N∑i=1

1

2∇2

ri−

N∑i=1

M∑k=1

zk|ri −Rk|

+∑

1≤i<j≤N

1

|ri − rj|self-adjoint op. onHN

The bound states are obtained by solving the Schrödinger equation

HNΨ = EΨ, Ψ ∈ WN

The ground state is obtained by solving the minimization problem

E0 = minΨ∈WN

〈Ψ|HN |Ψ〉 (pure-state formulation)

or, equivalently, the minimization problem

E0 = minΓ∈DN

Tr(HN Γ) (mixed-state formulation)

Page 13: Mathematical foundations of DFT

2 - Constrained search

Page 14: Mathematical foundations of DFT

2 - Constrained search 7.

Electronic densities

• Electronic density associated to a wavefunction Ψ ∈ WN

Ψ 7→ nΨ(r) = N

∫(R3)N−1

|Ψ(r, r2, · · · , rN)|2 dr2 · · · drN

Page 15: Mathematical foundations of DFT

2 - Constrained search 7.

Electronic densities

• Electronic density associated to a wavefunction Ψ ∈ WN

Ψ 7→ nΨ(r) = N

∫(R3)N−1

|Ψ(r, r2, · · · , rN)|2 dr2 · · · drN

• Electronic density associated to an N -body density operator Γ ∈ DN

Γ =

+∞∑l=1

fl|Ψl〉〈Ψl|linear7→ nΓ(r) =

+∞∑l=1

fl nΨl(r)

Page 16: Mathematical foundations of DFT

2 - Constrained search 7.

Electronic densities

• Electronic density associated to a wavefunction Ψ ∈ WN

Ψ 7→ nΨ(r) = N

∫(R3)N−1

|Ψ(r, r2, · · · , rN)|2 dr2 · · · drN

• Electronic density associated to an N -body density operator Γ ∈ DN

Γ =

+∞∑l=1

fl|Ψl〉〈Ψl|linear7→ nΓ(r) =

+∞∑l=1

fl nΨl(r)

Theorem (N -representability of densities).

We have

{n | ∃Ψ ∈ WN s.t. nΨ = n} ={n | ∃Γ ∈ DN s.t. nΓ = n

}= RN ,

where

RN :=

{n ≥ 0,

∫R3n(r) dr = N,

∫R3|∇√n(r)|2 dr <∞

}.

Page 17: Mathematical foundations of DFT

2 - Constrained search 8.

Usual splitting the electronic hamiltonian

HN = −N∑i=1

1

2∇2

ri−

N∑i=1

M∑k=1

zk|ri −Rk|

+∑

1≤i<j≤N

1

|ri − rj|= T + Vne︸ ︷︷ ︸+ Vee︸︷︷︸ .

1-body 2-body

Page 18: Mathematical foundations of DFT

2 - Constrained search 8.

Usual splitting the electronic hamiltonian

HN = −N∑i=1

1

2∇2

ri−

N∑i=1

M∑k=1

zk|ri −Rk|

+∑

1≤i<j≤N

1

|ri − rj|= T + Vne︸ ︷︷ ︸+ Vee︸︷︷︸ .

1-body 2-body

Hohenberg-Kohn splitting of the electronic hamiltonian

HN = T + Vee︸ ︷︷ ︸+ Vne︸︷︷︸generic specific (to the molecular system considered)

Page 19: Mathematical foundations of DFT

2 - Constrained search 8.

Usual splitting the electronic hamiltonian

HN = −N∑i=1

1

2∇2

ri−

N∑i=1

M∑k=1

zk|ri −Rk|

+∑

1≤i<j≤N

1

|ri − rj|= T + Vne︸ ︷︷ ︸+ Vee︸︷︷︸ .

1-body 2-body

Hohenberg-Kohn splitting of the electronic hamiltonian

HN = T + Vee︸ ︷︷ ︸+ Vne︸︷︷︸generic specific (to the molecular system considered)

〈Ψ|HN |Ψ〉 = 〈Ψ|T + Vee|Ψ〉 + 〈Ψ|Vne|Ψ〉 = 〈Ψ|T + Vee|Ψ〉 +

∫R3nΨV

V (r) = −M∑k=1

zk|r−Rk|

Page 20: Mathematical foundations of DFT

2 - Constrained search 8.

Usual splitting the electronic hamiltonian

HN = −N∑i=1

1

2∇2

ri−

N∑i=1

M∑k=1

zk|ri −Rk|

+∑

1≤i<j≤N

1

|ri − rj|= T + Vne︸ ︷︷ ︸+ Vee︸︷︷︸ .

1-body 2-body

Hohenberg-Kohn splitting of the electronic hamiltonian

HN = T + Vee︸ ︷︷ ︸+ Vne︸︷︷︸generic specific (to the molecular system considered)

〈Ψ|HN |Ψ〉 = 〈Ψ|T + Vee|Ψ〉 + 〈Ψ|Vne|Ψ〉 = 〈Ψ|T + Vee|Ψ〉 +

∫R3nΨV

V (r) = −M∑k=1

zk|r−Rk|

Tr(HN Γ

)= Tr

((T + Vee

)Γ)

+ Tr(VneΓ

)= Tr

((T + Vee

)Γ)

+

∫R3nΓV

Page 21: Mathematical foundations of DFT

2 - Constrained search 9.

Constrained search I: pure state formulation (Levy ’79, Lieb ’83)

E0 = infΨ∈WN

〈Ψ|HN |Ψ〉

Page 22: Mathematical foundations of DFT

2 - Constrained search 9.

Constrained search I: pure state formulation (Levy ’79, Lieb ’83)

E0 = infΨ∈WN

〈Ψ|HN |Ψ〉

= infn∈RN

(inf

Ψ∈WN |nΨ=n〈Ψ|HN |Ψ〉

)

Page 23: Mathematical foundations of DFT

2 - Constrained search 9.

Constrained search I: pure state formulation (Levy ’79, Lieb ’83)

E0 = infΨ∈WN

〈Ψ|HN |Ψ〉

= infn∈RN

(inf

Ψ∈WN |nΨ=n〈Ψ|HN |Ψ〉

)= inf

n∈RN

(inf

Ψ∈WN |nΨ=n

(〈Ψ|T + Vee|Ψ〉 +

∫R3nΨV

))

Page 24: Mathematical foundations of DFT

2 - Constrained search 9.

Constrained search I: pure state formulation (Levy ’79, Lieb ’83)

E0 = infΨ∈WN

〈Ψ|HN |Ψ〉

= infn∈RN

(inf

Ψ∈WN |nΨ=n〈Ψ|HN |Ψ〉

)= inf

n∈RN

(inf

Ψ∈WN |nΨ=n

(〈Ψ|T + Vee|Ψ〉 +

∫R3nΨV

))= inf

n∈RN

((inf

Ψ∈WN |nΨ=n〈Ψ|T + Vee|Ψ〉

)+

∫R3nV

).

Page 25: Mathematical foundations of DFT

2 - Constrained search 9.

Constrained search I: pure state formulation (Levy ’79, Lieb ’83)

E0 = infΨ∈WN

〈Ψ|HN |Ψ〉

= infn∈RN

(inf

Ψ∈WN |nΨ=n〈Ψ|HN |Ψ〉

)= inf

n∈RN

(inf

Ψ∈WN |nΨ=n

(〈Ψ|T + Vee|Ψ〉 +

∫R3nΨV

))= inf

n∈RN

((inf

Ψ∈WN |nΨ=n〈Ψ|T + Vee|Ψ〉

)+

∫R3nV

).

Let

FLL[n] = infΨ∈WN |nΨ=n

〈Ψ|T + Vee|Ψ〉 Levy-Lieb functional.

Page 26: Mathematical foundations of DFT

2 - Constrained search 9.

Constrained search I: pure state formulation (Levy ’79, Lieb ’83)

E0 = infΨ∈WN

〈Ψ|HN |Ψ〉

= infn∈RN

(inf

Ψ∈WN |nΨ=n〈Ψ|HN |Ψ〉

)= inf

n∈RN

(inf

Ψ∈WN |nΨ=n

(〈Ψ|T + Vee|Ψ〉 +

∫R3nΨV

))= inf

n∈RN

((inf

Ψ∈WN |nΨ=n〈Ψ|T + Vee|Ψ〉

)+

∫R3nV

).

Let

FLL[n] = infΨ∈WN |nΨ=n

〈Ψ|T + Vee|Ψ〉 Levy-Lieb functional.

We have

E0 = infn∈RN

(FLL[n] +

∫R3nV

).

Page 27: Mathematical foundations of DFT

2 - Constrained search 10.

Constrained search II: mixed state formulation (Valone ’80, Lieb ’83)

E0 = infΓ∈DN

Tr(HN Γ)

= infn∈RN

(inf

Γ∈DN |nΓ=n

Tr(HN Γ)

)

= infn∈RN

(inf

Γ∈DN |nΓ=n

(Tr(

(T + Vee)Γ)

+

∫R3nΓV

))

= infn∈RN

((inf

Γ∈DN |nΓ=n

(Tr(

(T + Vee)Γ)))

+

∫R3nV

).

LetFL[n] = inf

Γ∈DN |nΓ=n

Tr(

(T + Vee)Γ)

Lieb functional.

We have

E0 = infn∈RN

(FL[n] +

∫R3nV

).

Page 28: Mathematical foundations of DFT

2 - Constrained search 11.

FL[n0] = FLL[n0] if n0 is pure-state V -representable, that is if n0 is the den-sity associated with a ground state wavefunction for some external poten-tial V .

FL is the convex hull of FLL.

No explicit expressions of the functionals FL and FLL are available.

Approximations are needed for numerical simulations!

Page 29: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models

Page 30: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 13.

Density functional theory for non-interacting electrons

Hamiltonian Levy-Lieb Valone-Lieb

Interacting e− HN = (T + Vee) + Vne FLL[n] FL[n]

Non-interacting e− H0N = T + Vne TLL[n] TJ[n]

Page 31: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 13.

Density functional theory for non-interacting electrons

Hamiltonian Levy-Lieb Valone-Lieb

Interacting e− HN = (T + Vee) + Vne FLL[n] FL[n]

Non-interacting e− H0N = T + Vne TLL[n] TJ[n]

Can TLL[n] be "easily" computed? No.

Page 32: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 13.

Density functional theory for non-interacting electrons

Hamiltonian Levy-Lieb Valone-Lieb

Interacting e− HN = (T + Vee) + Vne FLL[n] FL[n]

Non-interacting e− H0N = T + Vne TLL[n] TJ[n]

Can TLL[n] be "easily" computed? No.

Can TJ[n] be "easily" computed? Yes!→ (extended) Kohn-Sham model

Page 33: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 14.

One-body reduced density matrix (1-RDM)

• 1-RDM associated to a wavefunction Ψ ∈ WN

Ψ 7→ γΨ(r, r′) := N

∫R3(N−1)

Ψ(r, r2, · · · , rN) Ψ(r′, r2, · · · , rN)∗ dr2 · · · drN

Page 34: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 14.

One-body reduced density matrix (1-RDM)

• 1-RDM associated to a wavefunction Ψ ∈ WN

Ψ 7→ γΨ(r, r′) := N

∫R3(N−1)

Ψ(r, r2, · · · , rN) Ψ(r′, r2, · · · , rN)∗ dr2 · · · drN

• 1-RDM associated to an N -body density operator Γ ∈ DN

Γ =

+∞∑l=1

fl|Ψl〉〈Ψl|linear7→ γΓ(r, r′) =

+∞∑l=1

fl γΨl(r, r′)

Page 35: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 14.

One-body reduced density matrix (1-RDM)

• 1-RDM associated to a wavefunction Ψ ∈ WN

Ψ 7→ γΨ(r, r′) := N

∫R3(N−1)

Ψ(r, r2, · · · , rN) Ψ(r′, r2, · · · , rN)∗ dr2 · · · drN

• 1-RDM associated to an N -body density operator Γ ∈ DN

Γ =

+∞∑l=1

fl|Ψl〉〈Ψl|linear7→ γΓ(r, r′) =

+∞∑l=1

fl γΨl(r, r′)

Relation between the 1-RDM and the density

nΨ(r) = γΨ(r, r), nΓ(r) = γΓ(r, r) (in some weak sense).

Page 36: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 14.

One-body reduced density matrix (1-RDM)

• 1-RDM associated to a wavefunction Ψ ∈ WN

Ψ 7→ γΨ(r, r′) := N

∫R3(N−1)

Ψ(r, r2, · · · , rN) Ψ(r′, r2, · · · , rN)∗ dr2 · · · drN

• 1-RDM associated to an N -body density operator Γ ∈ DN

Γ =

+∞∑l=1

fl|Ψl〉〈Ψl|linear7→ γΓ(r, r′) =

+∞∑l=1

fl γΨl(r, r′)

Relation between the 1-RDM and the density

nΨ(r) = γΨ(r, r), nΓ(r) = γΓ(r, r) (in some weak sense).

Expressions of the kinetic energy as a function of the 1-RDM

〈Ψ|T |Ψ〉 =1

2

∫R3

(−∇2

rγΨ(r, r′)|r′=r

)dr

Tr(T Γ)

=1

2

∫R3

(−∇2

rγΓ(r, r′)|r′=r

)dr

Page 37: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 15.

Janak functional

TJ[n] = infΓ∈DN |nΓ

=nTr(T Γ)

= infγ | ∃Γ∈DN s.t. γ

Γ=γ, n

Γ=n

1

2

∫R3

(−∇2

rγ(r, r′)|r′=r

)dr

Page 38: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 15.

Janak functional

TJ[n] = infΓ∈DN |nΓ

=nTr(T Γ)

= infγ | ∃Γ∈DN s.t. γ

Γ=γ, n

Γ=n

1

2

∫R3

(−∇2

rγ(r, r′)|r′=r

)dr

Theorem (N -representability of mixed-state 1-RDM).

Let GN :={γ | ∃Γ ∈ DN s.t. γΓ = γ

}. We have

GN :=

{γ(r, r′) =

+∞∑i=1

νiφi(r)φi(r′)∗∣∣ 0 ≤ νi ≤ 1,

+∞∑i=1

νi = N,∫R3φiφ

∗j = δi,j,

+∞∑i=1

νi

∫R3|∇φi|2 <∞

}.

Page 39: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 15.

Janak functional

TJ[n] = infΓ∈DN |nΓ

=nTr(T Γ)

= infγ | ∃Γ∈DN s.t. γ

Γ=γ, n

Γ=n

1

2

∫R3

(−∇2

rγ(r, r′)|r′=r

)dr

Theorem (N -representability of mixed-state 1-RDM).

Let GN :={γ | ∃Γ ∈ DN s.t. γΓ = γ

}. We have

GN :=

{γ(r, r′) =

+∞∑i=1

νiφi(r)φi(r′)∗∣∣ 0 ≤ νi ≤ 1,

+∞∑i=1

νi = N,∫R3φiφ

∗j = δi,j,

+∞∑i=1

νi

∫R3|∇φi|2 <∞

}.

"Explicit" expression of the Janak functional

TJ[n] = inf

{1

2

+∞∑i=1

νi

∫R3|∇φi|2, 0 ≤ νi ≤ 1,

+∞∑i=1

νi = N,∫R3φiφ

∗j = δi,j,

+∞∑i=1

νi|φi(r)|2 = n(r)

}.

Page 40: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 16.

Exchange-correlation functional

FL[n] = infΓ∈DN |nΓ

=nTr((T + Vee

)Γ)

= TJ[n] + EHartree[n] + Exc[n]

where• TJ[n]: Janak functional

• EHartree[n] =1

2

∫R3

∫R3

n(r)n(r′)

|r− r′|dr dr′: classical Coulomb interaction

• Exc[n] := FL[n]− T [n]− EHartree[n]: exchange-correlation functional.

Local Density Approximation (LDA):

ELDAxc [n] =

∫R3eHEG

xc (n(r)) dr

eHEGxc (n): exchange-correlation energy density of a homogeneous electron

gas of uniform density n.

Page 41: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 17.

Extended Kohn-Sham LDA model (orbital formulation)

ELDA0 = inf

{ELDA({φi, νi}), 0 ≤ νi ≤ 1,

+∞∑i=1

νi = N,∫R3φiφ

∗j = δi,j,

1

2

+∞∑i=1

νi

∫R3|∇φi|2 <∞

}.

φi: ith Kohn-Sham orbitalνi: occupation number of φi

ELDA({φi, νi}) =1

2

+∞∑i=1

νi

∫R3|∇φi|2+

∫R3n{φi,νi}V +EHartree[[n{φi,νi}]+

∫R3eHEG

xc (n{φi,νi}(r)) dr

n{φi,νi}(r) =

+∞∑i=1

νi|φi(r)|2

Page 42: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 18.

Extended Kohn-Sham LDA model (density operator formulation)

density matrix γ(r, r′) =

+∞∑i=1

νiφi(r)φi(r′)∗ ↔ γ =

+∞∑i=1

νi|φi〉〈φi| density operator

ELDA0 = inf

{ELDA(γ), γ ∈ S(L2(R3)), 0 ≤ γ ≤ 1, Tr(γ) = N, Tr(−∆γ) <∞

}ELDA(γ) = Tr

(−1

2∇2γ

)+

∫R3nγ(r)V (r) dr+EHartree[nγ]+

∫R3eHEG

xc (nγ(r)) dr,

nγ(r) = γ(r, r) in some weak sense.

The minimization set{γ ∈ S(L2(R3)), 0 ≤ γ ≤ 1, Tr(γ) = N, Tr(−∆γ) <∞

}is convex and so are the first three terms of the LDA functional. On theother hand, the LDA exchange-correlation functional is concave.

Page 43: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 19.

Extended Kohn-Sham LDA equations (first order optimality conditions)

γ0 =∑i

νi|φi〉〈φi|, γ0(r, r′) =∑i

νiφi(r)φi(r′)∗, n0(r) = γ0(r, r) =

∑i

νi|φi(r)|2

HKSn0 φi = εiφi∫R3φiφ

∗j = δij

and

∣∣∣∣∣∣νi = 1 if εi < εF,0 ≤ νi ≤ 1 if εi = εF,νi = 0 if εi > εF,

∑i

νi = N

εFε

F

N=5 N=6

HKSn0 = −1

2∆ + V + n0 ? | · |−1 +

deHEGxc

dn(n0)

Page 44: Mathematical foundations of DFT

3 - Kohn-Sham and extended Kohn-Sham models 20.

Some comments

1. For the exact exchange-correlation functional, the Kohn-Sham and ex-tended Kohn-Sham models give the same ground state energy.

2. For approximate exchange-correlation functionals, the two models agreefor "insulators", but may differ from "metals".

3. The extended Kohn-Sham is the one actually simulated when smearingtechniques are used to fasten SCF convergence: it is the limit when Tgoes to zero of the finite-temperature Kohn-Sham model.

4. The density operator formulation of the (extended) Kohn-Sham modelis very useful for the numerical simulation of very large systems (Kohn’s"shortsightedness" principle = decay of γ(r, r′) when |r− r′| → 0).

Page 45: Mathematical foundations of DFT

4 - Thermodynamic limits

Page 46: Mathematical foundations of DFT

4 - Thermodynamic limits 22.

DFT for crystals: some theoretical and practical issues

For each model (TFW, Hartree, LDA, GGA-PBE, B3LYP, ...),

1. Existence (and uniqueness) of the ground state density for molecules

2. Thermodynamic (bulk) limit for perfect crystals

L

Neutral finite cluster ρnucL , ρ0

L, γ0L∫

R3ρnucL =

∫R3ρ0L = Tr(γ0

L) = NL3

When L→∞, ρnucL converges to someR-periodic charge density ρnuc

per ,

• does ρ0L have a limit?

• is this limit someR-periodic density ρ0per?

• can ρ0per be characterized as a solution of some variational problem?

• can this problem be solved numerically?• same questions for the limit γ0

per of γ0L.

Page 47: Mathematical foundations of DFT

4 - Thermodynamic limits 23.

3. Thermodynamic limits for crystals with local defects and screening effect

ρnuc = ρnucper + m ρ0 = ρ0

per + ρm,εF γ0 = γ0per + Qm,εF

Formal definitions of the total charge of the defect

•∫R3m−

∫R3ρm,εF

• and also for Kohn-Sham models,∫R3m− Tr(Qm,εF)

Tr(Qm,εF) 6=∫R3 ρ

m,εF −→ charge screening!

Page 48: Mathematical foundations of DFT

4 - Thermodynamic limits 24.

State of the art of the mathematical analysis for 1, 2 and 3

Molecules Perfect crystals Charge screening

TF Lieb-Simon ’77 Lieb-Simon ’77 Lieb-Simon ’77TFW Lieb ’81 CLL ’98 E.C.-Ehrlacher ’11DIOF Blanc-E.C. ’05 - -DDOF ? ? ?

Hartree Solovej ’91 CLL ’01 E.C.-Lewin ’10LDA Anantharaman-E.C. ’09 non convex non convexGGA ?? ?? ??

B3LYP ?? ?? ??

Schrödinger Zhislin ’61 ???Fefferman ’85

HLS ’11

???

CLL: Catto-LeBris-Lions, HLS: Hainzl, Lewin, Solovej