Top Banner
Math 170A (Winter 2009) - Lecture 24 Emre Mengi Department of Mathematics University of California at San Diego [email protected] Lecture 24 – p.1/14
46

Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Aug 20, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Math 170A (Winter 2009) - Lecture 24

Emre MengiDepartment of Mathematics

University of California at San Diego

[email protected]

Lecture 24 – p.1/14

Page 2: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Outline

Eigenvalues and Eigenvectors

Convergence Properties of Power Iteration - section 5.3

Extensions of Power Iteration - section 5.3

Lecture 24 – p.2/14

Page 3: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Power Iteration

Reminders from last lecture

Lecture 24 – p.3/14

Page 4: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Power Iteration

Reminders from last lecture

Given a matrix A ∈ Cn×n and an initial vector q0 ∈ Cn. The poweriteration generates the sequence of vectors {qk} satisfying

qk :=Aqk−1

‖Aqk−1‖, (k = 1, 2, . . . )

Lecture 24 – p.3/14

Page 5: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Power Iteration

Reminders from last lecture

Given a matrix A ∈ Cn×n and an initial vector q0 ∈ Cn. The poweriteration generates the sequence of vectors {qk} satisfying

qk :=Aqk−1

‖Aqk−1‖, (k = 1, 2, . . . )

Convergence to dominant eigenvector:The sequence {qk} approaches a unit eigenvector v̂ associated withthe eigenvalue λ1 with largest modulus.

Lecture 24 – p.3/14

Page 6: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Power Iteration

Reminders from last lecture

Given a matrix A ∈ Cn×n and an initial vector q0 ∈ Cn. The poweriteration generates the sequence of vectors {qk} satisfying

qk :=Aqk−1

‖Aqk−1‖, (k = 1, 2, . . . )

Convergence to dominant eigenvector:The sequence {qk} approaches a unit eigenvector v̂ associated withthe eigenvalue λ1 with largest modulus.

Retrieval of dominant eigenvalue:Notice that v̂∗Av̂ = v̂∗λ1v̂ = λ1‖v̂‖

2 = λ1.

Lecture 24 – p.3/14

Page 7: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Power Iteration

Pseudocode

Given A ∈ Cn×n and q0 ∈ Cn s.t. ‖q0‖ = 1.for k = 1, m do

qk ← Aqk−1

qk ← qk/‖qk‖

end forv ← qm

λ← q∗mAqm

Return (λ, v)

Lecture 24 – p.4/14

Page 8: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Power Iteration

Rate of Convergence : Suppose limk→∞vk = v̂.

Lecture 24 – p.5/14

Page 9: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Power Iteration

Rate of Convergence : Suppose limk→∞vk = v̂.

Linear convergence : for some positive constant c < 1

limk→∞

‖vk+1 − v̂‖

‖vk − v̂‖= c

Lecture 24 – p.5/14

Page 10: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Power Iteration

Rate of Convergence : Suppose limk→∞vk = v̂.

Linear convergence : for some positive constant c < 1

limk→∞

‖vk+1 − v̂‖

‖vk − v̂‖= c

e.g. {10−k} = {0.1, 0.01, 001, . . . } converges to 0 linearly.

Lecture 24 – p.5/14

Page 11: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Power Iteration

Rate of Convergence : Suppose limk→∞vk = v̂.

Linear convergence : for some positive constant c < 1

limk→∞

‖vk+1 − v̂‖

‖vk − v̂‖= c

e.g. {10−k} = {0.1, 0.01, 001, . . . } converges to 0 linearly.

10−(k+1)−0

10−k−0

= 0.1

Lecture 24 – p.5/14

Page 12: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Power Iteration

Rate of Convergence : Suppose limk→∞vk = v̂.

Linear convergence : for some positive constant c < 1

limk→∞

‖vk+1 − v̂‖

‖vk − v̂‖= c

e.g. {10−k} = {0.1, 0.01, 001, . . . } converges to 0 linearly.

10−(k+1)−0

10−k−0

= 0.1

Quadratic convergence : for some positive constant c

limk→∞

‖vk+1 − v̂‖

‖vk − v̂‖2= c.

Lecture 24 – p.5/14

Page 13: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Power Iteration

Rate of Convergence : Suppose limk→∞vk = v̂.

Linear convergence : for some positive constant c < 1

limk→∞

‖vk+1 − v̂‖

‖vk − v̂‖= c

e.g. {10−k} = {0.1, 0.01, 001, . . . } converges to 0 linearly.

10−(k+1)−0

10−k−0

= 0.1

Quadratic convergence : for some positive constant c

limk→∞

‖vk+1 − v̂‖

‖vk − v̂‖2= c.

e.g. {10−2k} = {10−2, 10−4, 10−8, 10−16, . . . } converges to 0 quadratically.

Lecture 24 – p.5/14

Page 14: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Power Iteration

Rate of Convergence : Suppose limk→∞vk = v̂.

Linear convergence : for some positive constant c < 1

limk→∞

‖vk+1 − v̂‖

‖vk − v̂‖= c

e.g. {10−k} = {0.1, 0.01, 001, . . . } converges to 0 linearly.

10−(k+1)−0

10−k−0

= 0.1

Quadratic convergence : for some positive constant c

limk→∞

‖vk+1 − v̂‖

‖vk − v̂‖2= c.

e.g. {10−2k} = {10−2, 10−4, 10−8, 10−16, . . . } converges to 0 quadratically.

10−2k+1−0

(10−2k−0)2

=10−2k+1

10−2k10−2k =

10−2k+1

10−2k+1 = 1

Lecture 24 – p.5/14

Page 15: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Power Iteration

Rate of Convergence: It can be shown that for some constant c

limk→∞

‖v̂ − qk+1‖

‖v̂ − qk‖= c

λ2

λ1

Lecture 24 – p.6/14

Page 16: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Power Iteration

Rate of Convergence: It can be shown that for some constant c

limk→∞

‖v̂ − qk+1‖

‖v̂ − qk‖= c

λ2

λ1

When it is convergent, the power iteration converges only linearly.

The closer the moduli of the eigenvalues λ2 and λ1 are, theslower the convergence is.

Lecture 24 – p.6/14

Page 17: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Power Iteration

Rate of Convergence: It can be shown that for some constant c

limk→∞

‖v̂ − qk+1‖

‖v̂ − qk‖= c

λ2

λ1

When it is convergent, the power iteration converges only linearly.

The closer the moduli of the eigenvalues λ2 and λ1 are, theslower the convergence is.

Dominant Eigenvalue:

Lecture 24 – p.6/14

Page 18: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Power Iteration

Rate of Convergence: It can be shown that for some constant c

limk→∞

‖v̂ − qk+1‖

‖v̂ − qk‖= c

λ2

λ1

When it is convergent, the power iteration converges only linearly.

The closer the moduli of the eigenvalues λ2 and λ1 are, theslower the convergence is.

Dominant Eigenvalue: The eigenvalue with largest modulus is givenby q(v̂) where

r(x) =x∗Ax

x∗x

is called the Rayleigh quotient of x ∈ Cn.

Lecture 24 – p.6/14

Page 19: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Power Iteration

Rate of Convergence: It can be shown that for some constant c

limk→∞

‖v̂ − qk+1‖

‖v̂ − qk‖= c

λ2

λ1

When it is convergent, the power iteration converges only linearly.

The closer the moduli of the eigenvalues λ2 and λ1 are, theslower the convergence is.

Dominant Eigenvalue: The eigenvalue with largest modulus is givenby q(v̂) where

r(x) =x∗Ax

x∗x

is called the Rayleigh quotient of x ∈ Cn.

Note that r(v̂) = v̂∗Av̂v̂∗v̂

= v̂∗λ1v̂v̂∗v̂

= λ1

Lecture 24 – p.6/14

Page 20: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Inverse Iteration

Power iteration suffers from slow convergence, when |λ1| ≈ |λ2|.

Lecture 24 – p.7/14

Page 21: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Inverse Iteration

Power iteration suffers from slow convergence, when |λ1| ≈ |λ2|.

A key observation to speed-up power iteration

Av = λv ⇐⇒ Av − µv = λv − µv

Lecture 24 – p.7/14

Page 22: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Inverse Iteration

Power iteration suffers from slow convergence, when |λ1| ≈ |λ2|.

A key observation to speed-up power iteration

Av = λv ⇐⇒ Av − µv = λv − µv

⇐⇒ (A− µI)v = (λ− µ)v

Lecture 24 – p.7/14

Page 23: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Inverse Iteration

Power iteration suffers from slow convergence, when |λ1| ≈ |λ2|.

A key observation to speed-up power iteration

Av = λv ⇐⇒ Av − µv = λv − µv

⇐⇒ (A− µI)v = (λ− µ)v

⇐⇒ (λ− µ)−1v = (A− µI)−1v

Lecture 24 – p.7/14

Page 24: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Inverse Iteration

Power iteration suffers from slow convergence, when |λ1| ≈ |λ2|.

A key observation to speed-up power iteration

Av = λv ⇐⇒ Av − µv = λv − µv

⇐⇒ (A− µI)v = (λ− µ)v

⇐⇒ (λ− µ)−1v = (A− µI)−1v

(λ, v) is an eigenpair of A⇐⇒ ((λ−µ)−1, v) is an eigenpair of (A−µI)−1

Lecture 24 – p.7/14

Page 25: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Inverse Iteration

Power iteration suffers from slow convergence, when |λ1| ≈ |λ2|.

A key observation to speed-up power iteration

Av = λv ⇐⇒ Av − µv = λv − µv

⇐⇒ (A− µI)v = (λ− µ)v

⇐⇒ (λ− µ)−1v = (A− µI)−1v

(λ, v) is an eigenpair of A⇐⇒ ((λ−µ)−1, v) is an eigenpair of (A−µI)−1

Suppose σ is a good estimate of an eigenvalue λl.

Lecture 24 – p.7/14

Page 26: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Inverse Iteration

Power iteration suffers from slow convergence, when |λ1| ≈ |λ2|.

A key observation to speed-up power iteration

Av = λv ⇐⇒ Av − µv = λv − µv

⇐⇒ (A− µI)v = (λ− µ)v

⇐⇒ (λ− µ)−1v = (A− µI)−1v

(λ, v) is an eigenpair of A⇐⇒ ((λ−µ)−1, v) is an eigenpair of (A−µI)−1

Suppose σ is a good estimate of an eigenvalue λl.

That is |λl − σ| ≪ |λj − σ| (or 1

|λl−σ| ≫1

|λj−σ| ) for all j 6= l.

Lecture 24 – p.7/14

Page 27: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Inverse Iteration

Power iteration suffers from slow convergence, when |λ1| ≈ |λ2|.

A key observation to speed-up power iteration

Av = λv ⇐⇒ Av − µv = λv − µv

⇐⇒ (A− µI)v = (λ− µ)v

⇐⇒ (λ− µ)−1v = (A− µI)−1v

(λ, v) is an eigenpair of A⇐⇒ ((λ−µ)−1, v) is an eigenpair of (A−µI)−1

Suppose σ is a good estimate of an eigenvalue λl.

That is |λl − σ| ≪ |λj − σ| (or 1

|λl−σ| ≫1

|λj−σ| ) for all j 6= l.

The eigenvalues of (A− σI)−1 are 1

λ1−σ, 1

λ2−σ, . . . , 1

λn−σ

Lecture 24 – p.7/14

Page 28: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Inverse Iteration

Power iteration suffers from slow convergence, when |λ1| ≈ |λ2|.

A key observation to speed-up power iteration

Av = λv ⇐⇒ Av − µv = λv − µv

⇐⇒ (A− µI)v = (λ− µ)v

⇐⇒ (λ− µ)−1v = (A− µI)−1v

(λ, v) is an eigenpair of A⇐⇒ ((λ−µ)−1, v) is an eigenpair of (A−µI)−1

Suppose σ is a good estimate of an eigenvalue λl.

That is |λl − σ| ≪ |λj − σ| (or 1

|λl−σ| ≫1

|λj−σ| ) for all j 6= l.

The eigenvalues of (A− σI)−1 are 1

λ1−σ, 1

λ2−σ, . . . , 1

λn−σ

Power iteration applied to (A−σI)−1 must converge to vl quickly.

Lecture 24 – p.7/14

Page 29: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Inverse Iteration

Rate of Convergence: Let λj be the eigenvalue second closest to σ.

limk→∞

‖v̂ − qk+1‖

‖v̂ − qk‖= c

1/(λj − σ)

1/(λl − σ)

= c

λl − σ

λj − σ

Lecture 24 – p.8/14

Page 30: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Inverse Iteration

Rate of Convergence: Let λj be the eigenvalue second closest to σ.

limk→∞

‖v̂ − qk+1‖

‖v̂ − qk‖= c

1/(λj − σ)

1/(λl − σ)

= c

λl − σ

λj − σ

Inverse iteration requires the product (A− σI)−1qk, equivalently thesolution of the linear system (A− σI)x = qk, at each iteration.

Lecture 24 – p.8/14

Page 31: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Inverse Iteration

Rate of Convergence: Let λj be the eigenvalue second closest to σ.

limk→∞

‖v̂ − qk+1‖

‖v̂ − qk‖= c

1/(λj − σ)

1/(λl − σ)

= c

λl − σ

λj − σ

Inverse iteration requires the product (A− σI)−1qk, equivalently thesolution of the linear system (A− σI)x = qk, at each iteration.

In practice an LU factorization of (A− σI) is computed initially (ata cost of 2n3/3).

Lecture 24 – p.8/14

Page 32: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Inverse Iteration

Rate of Convergence: Let λj be the eigenvalue second closest to σ.

limk→∞

‖v̂ − qk+1‖

‖v̂ − qk‖= c

1/(λj − σ)

1/(λl − σ)

= c

λl − σ

λj − σ

Inverse iteration requires the product (A− σI)−1qk, equivalently thesolution of the linear system (A− σI)x = qk, at each iteration.

In practice an LU factorization of (A− σI) is computed initially (ata cost of 2n3/3).

At each iteration the system

(A− σI)x = LUx = qj

is solved by forward and back substitutions (at a cost of O(n2)).

Lecture 24 – p.8/14

Page 33: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Inverse Iteration

Pseudocode

Given A ∈ Cn×n, q0 ∈ Cn s.t. ‖q0‖ = 1 and σ ∈ C.Compute an LU factorization of (A− σI)

for k = 1, m doSolve Lx̂ = qk−1 by forward substitution.Solve Ux = x̂ by back substitution.qk ← x/‖x‖

end forv ← qm

λ← q∗mAqm

Return (λ, v)

Lecture 24 – p.9/14

Page 34: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Inverse Iteration

Inverse iteration is commonly employed to compute the eigenvectorsgiven the eigenvalues (or very good estimates).

Lecture 24 – p.10/14

Page 35: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Inverse Iteration

Inverse iteration is commonly employed to compute the eigenvectorsgiven the eigenvalues (or very good estimates).

Suppose λ is very close to an eigenvalue.

Lecture 24 – p.10/14

Page 36: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Inverse Iteration

Inverse iteration is commonly employed to compute the eigenvectorsgiven the eigenvalues (or very good estimates).

Suppose λ is very close to an eigenvalue.

(A− λI) is almost singular.

Lecture 24 – p.10/14

Page 37: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Inverse Iteration

Inverse iteration is commonly employed to compute the eigenvectorsgiven the eigenvalues (or very good estimates).

Suppose λ is very close to an eigenvalue.

(A− λI) is almost singular.

The condition number of the matrix (A− λI) is large.

Lecture 24 – p.10/14

Page 38: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Inverse Iteration

Inverse iteration is commonly employed to compute the eigenvectorsgiven the eigenvalues (or very good estimates).

Suppose λ is very close to an eigenvalue.

(A− λI) is almost singular.

The condition number of the matrix (A− λI) is large.

The computed solution x̂ for (A− λI)x = qk can potentially havea large error ‖x̂− x‖.

Lecture 24 – p.10/14

Page 39: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Inverse Iteration

Inverse iteration is commonly employed to compute the eigenvectorsgiven the eigenvalues (or very good estimates).

Suppose λ is very close to an eigenvalue.

(A− λI) is almost singular.

The condition number of the matrix (A− λI) is large.

The computed solution x̂ for (A− λI)x = qk can potentially havea large error ‖x̂− x‖.

The direction of the computed solution is usually accurate, i.e.∥

x̂‖x̂‖ −

x‖x‖

∥is usually small.

Lecture 24 – p.10/14

Page 40: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Rayleigh Iteration

Rayleigh iteration is similar to the inverse iteration with the exceptionthat the shifts σ are set to the Rayleigh quotient at every iteration, i.e.

qk :=(A− σk−1I)−1qk−1

‖(A− σk−1I)−1qk−1‖where σk−1 := r(qk−1) =

q∗k−1Aqk−1

q∗k−1qk−1

Lecture 24 – p.11/14

Page 41: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Rayleigh Iteration

Rayleigh iteration is similar to the inverse iteration with the exceptionthat the shifts σ are set to the Rayleigh quotient at every iteration, i.e.

qk :=(A− σk−1I)−1qk−1

‖(A− σk−1I)−1qk−1‖where σk−1 := r(qk−1) =

q∗k−1Aqk−1

q∗k−1qk−1

Upside: Rayleigh iteration usually converges to an eigenvector vl

associated with an eigenvalue λl very quickly.

Lecture 24 – p.11/14

Page 42: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Rayleigh Iteration

Rayleigh iteration is similar to the inverse iteration with the exceptionthat the shifts σ are set to the Rayleigh quotient at every iteration, i.e.

qk :=(A− σk−1I)−1qk−1

‖(A− σk−1I)−1qk−1‖where σk−1 := r(qk−1) =

q∗k−1Aqk−1

q∗k−1qk−1

Upside: Rayleigh iteration usually converges to an eigenvector vl

associated with an eigenvalue λl very quickly.

The quick convergence is due to the fact that r(qk) becomes anincreasingly better estimate of r(vl) = λl as qk approaches vl.

|r(qk)− λl| = |r(qk)− r(vl)| ≤ 2‖A‖‖qk − vl‖

See Theorem 5.3.25 on page 326 in the textbook.

Lecture 24 – p.11/14

Page 43: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Rayleigh Iteration

Rate of Convergence: Suppose limk→∞ qk = v̂. Then

limk→∞

‖v̂ − qk+1‖

‖v̂ − qk‖2= c

Rate of convergence is quadratic.

Lecture 24 – p.12/14

Page 44: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Rayleigh Iteration

Rate of Convergence: Suppose limk→∞ qk = v̂. Then

limk→∞

‖v̂ − qk+1‖

‖v̂ − qk‖2= c

Rate of convergence is quadratic.

Downside: At each iteration an LU factorization of (A− σkI) needs tobe computed from scratch to solve (A− σkI)x = qk for x.

Each iteration costs 2n3

3flops.

Lecture 24 – p.12/14

Page 45: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Rayleigh Iteration

Pseudocode

Given A ∈ Cn×n and q0 ∈ Cn s.t. ‖q0‖ = 1.for k = 1, m do

σk−1 ← q∗k−1Aqk−1

Compute an LU factorization of (A− σk−1I)

Solve Lx̂ = qk−1 by forward substitution.Solve Ux = x̂ by back substitution.qk ← x/‖x‖

end forv ← qm

λ← q∗mAqm

Return (λ, v)

Lecture 24 – p.13/14

Page 46: Math 170A (Winter 2009) - Lecture 24home.ku.edu.tr/~emengi/teaching/math170a/Lecture24.pdf · Lecture 24 – p.3/14. Power Iteration Reminders from last lecture Given a matrix A ∈Cn×n

Next

Today: Reduction to Hessenberg form - section 5.5

Next Lecture : The QR Algorithm - section 5.6

Lecture 24 – p.14/14