Top Banner
Basic Definitions Motivation Eigenvalues - Basics Emre Mengi Department of Mathemtics Koç University Istanbul, Turkey December 5th, 2011 Emre Mengi
97

Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Mar 26, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues - Basics

Emre Mengi

Department of MathemticsKoç University

Istanbul, Turkey

December 5th, 2011

Emre Mengi

Page 2: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Definition (Eigenvalues and Eigenvectors)

Let A ∈ Cn×n. Suppose that

Ax = λx

for some scalar λ ∈ C and nonzero vector x ∈ Cn. Then(i) λ is called an eigenvalue of A, and

(ii) x is called an eigenvector of A associated with λ.

Emre Mengi

Page 3: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Example:[1 00 3

]︸ ︷︷ ︸

A

[10

]︸ ︷︷ ︸

x1

= 1︸︷︷︸λ1

[10

]︸ ︷︷ ︸

x1

and[

1 00 3

]︸ ︷︷ ︸

A

[01

]︸ ︷︷ ︸

x2

= 3︸︷︷︸λ2

[01

]︸ ︷︷ ︸

x2

λ1 = 1 and λ2 = 3 are eigenvalues of A.

x1 =

[10

], x2 =

[01

]are eigenvectors assoc with λ1, λ2.

Emre Mengi

Page 4: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Example:[1 00 3

]︸ ︷︷ ︸

A

[10

]︸ ︷︷ ︸

x1

= 1︸︷︷︸λ1

[10

]︸ ︷︷ ︸

x1

and[

1 00 3

]︸ ︷︷ ︸

A

[01

]︸ ︷︷ ︸

x2

= 3︸︷︷︸λ2

[01

]︸ ︷︷ ︸

x2

λ1 = 1 and λ2 = 3 are eigenvalues of A.

x1 =

[10

], x2 =

[01

]are eigenvectors assoc with λ1, λ2.

Emre Mengi

Page 5: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Example:[1 00 3

]︸ ︷︷ ︸

A

[10

]︸ ︷︷ ︸

x1

= 1︸︷︷︸λ1

[10

]︸ ︷︷ ︸

x1

and[

1 00 3

]︸ ︷︷ ︸

A

[01

]︸ ︷︷ ︸

x2

= 3︸︷︷︸λ2

[01

]︸ ︷︷ ︸

x2

λ1 = 1 and λ2 = 3 are eigenvalues of A.

x1 =

[10

], x2 =

[01

]are eigenvectors assoc with λ1, λ2.

Emre Mengi

Page 6: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

For any eigenvalue problem there is an equivalent polynomialroot-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)

λ is an eigenvalue of A⇐⇒ det(A− λI) = 0

Proof:λ is an eigenvalue of A ⇐⇒ Ax = λx ∃x 6= 0

⇐⇒ Ax − λx = (A− λI)x = 0 ∃x 6= 0⇐⇒ A− λI is singular⇐⇒ det(A− λI) = 0

Emre Mengi

Page 7: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

For any eigenvalue problem there is an equivalent polynomialroot-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)

λ is an eigenvalue of A⇐⇒ det(A− λI) = 0

Proof:λ is an eigenvalue of A ⇐⇒ Ax = λx ∃x 6= 0

⇐⇒ Ax − λx = (A− λI)x = 0 ∃x 6= 0⇐⇒ A− λI is singular⇐⇒ det(A− λI) = 0

Emre Mengi

Page 8: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

For any eigenvalue problem there is an equivalent polynomialroot-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)

λ is an eigenvalue of A⇐⇒ det(A− λI) = 0

Proof:λ is an eigenvalue of A ⇐⇒ Ax = λx ∃x 6= 0

⇐⇒ Ax − λx = (A− λI)x = 0 ∃x 6= 0⇐⇒ A− λI is singular⇐⇒ det(A− λI) = 0

Emre Mengi

Page 9: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

For any eigenvalue problem there is an equivalent polynomialroot-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)

λ is an eigenvalue of A⇐⇒ det(A− λI) = 0

Proof:λ is an eigenvalue of A ⇐⇒ Ax = λx ∃x 6= 0

⇐⇒ Ax − λx = (A− λI)x = 0 ∃x 6= 0⇐⇒ A− λI is singular⇐⇒ det(A− λI) = 0

Emre Mengi

Page 10: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

For any eigenvalue problem there is an equivalent polynomialroot-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)

λ is an eigenvalue of A⇐⇒ det(A− λI) = 0

Proof:λ is an eigenvalue of A ⇐⇒ Ax = λx ∃x 6= 0

⇐⇒ Ax − λx = (A− λI)x = 0 ∃x 6= 0⇐⇒ A− λI is singular⇐⇒ det(A− λI) = 0

Emre Mengi

Page 11: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

For any eigenvalue problem there is an equivalent polynomialroot-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)

λ is an eigenvalue of A⇐⇒ det(A− λI) = 0

Proof:λ is an eigenvalue of A ⇐⇒ Ax = λx ∃x 6= 0

⇐⇒ Ax − λx = (A− λI)x = 0 ∃x 6= 0⇐⇒ A− λI is singular⇐⇒ det(A− λI) = 0

Emre Mengi

Page 12: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

For any eigenvalue problem there is an equivalent polynomialroot-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)

λ is an eigenvalue of A⇐⇒ det(A− λI) = 0

Proof:λ is an eigenvalue of A ⇐⇒ Ax = λx ∃x 6= 0

⇐⇒ Ax − λx = (A− λI)x = 0 ∃x 6= 0⇐⇒ A− λI is singular⇐⇒ det(A− λI) = 0

Emre Mengi

Page 13: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Example:

A =

[−1 4

1 −1

]

det(A− λI)) = det([−1 4

1 −1

]− λ

[1 00 1

])= det

([−1− λ 4

1 −1− λ

])= (−1− λ)2 − 4 = λ2 + 2λ− 3

Eigenvalues of Adet(A− λI) = λ2 + 2λ− 3 = (λ+ 3)(λ− 1),

so the eigenvalues are λ1 = −3, λ2 = 1.

Emre Mengi

Page 14: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Example:

A =

[−1 4

1 −1

]

det(A− λI)) = det([−1 4

1 −1

]− λ

[1 00 1

])= det

([−1− λ 4

1 −1− λ

])= (−1− λ)2 − 4 = λ2 + 2λ− 3

Eigenvalues of Adet(A− λI) = λ2 + 2λ− 3 = (λ+ 3)(λ− 1),

so the eigenvalues are λ1 = −3, λ2 = 1.

Emre Mengi

Page 15: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Example:

A =

[−1 4

1 −1

]

det(A− λI)) = det([−1 4

1 −1

]− λ

[1 00 1

])= det

([−1− λ 4

1 −1− λ

])= (−1− λ)2 − 4 = λ2 + 2λ− 3

Eigenvalues of Adet(A− λI) = λ2 + 2λ− 3 = (λ+ 3)(λ− 1),

so the eigenvalues are λ1 = −3, λ2 = 1.

Emre Mengi

Page 16: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Example:

A =

[−1 4

1 −1

]

det(A− λI)) = det([−1 4

1 −1

]− λ

[1 00 1

])= det

([−1− λ 4

1 −1− λ

])= (−1− λ)2 − 4 = λ2 + 2λ− 3

Eigenvalues of Adet(A− λI) = λ2 + 2λ− 3 = (λ+ 3)(λ− 1),

so the eigenvalues are λ1 = −3, λ2 = 1.

Emre Mengi

Page 17: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Example:

A =

[−1 4

1 −1

]

det(A− λI)) = det([−1 4

1 −1

]− λ

[1 00 1

])= det

([−1− λ 4

1 −1− λ

])= (−1− λ)2 − 4 = λ2 + 2λ− 3

Eigenvalues of Adet(A− λI) = λ2 + 2λ− 3 = (λ+ 3)(λ− 1),

so the eigenvalues are λ1 = −3, λ2 = 1.

Emre Mengi

Page 18: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Example:

A =

[−1 4

1 −1

]

det(A− λI)) = det([−1 4

1 −1

]− λ

[1 00 1

])= det

([−1− λ 4

1 −1− λ

])= (−1− λ)2 − 4 = λ2 + 2λ− 3

Eigenvalues of Adet(A− λI) = λ2 + 2λ− 3 = (λ+ 3)(λ− 1),

so the eigenvalues are λ1 = −3, λ2 = 1.

Emre Mengi

Page 19: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Definition (Characteristic Polynomial)

p(λ) = det(A− λI) is a monic polynomial of λ of degree n andcalled the characteristic polynomial of A.

e.g.

The characteristic polynomial for A =

[−1 4

1 −1

]p(λ) = det(A− λI) = λ2 + 2λ− 3

The eigenvalues of A ∈ Cn×n are the roots of its characteristicpolynomial.

Emre Mengi

Page 20: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Definition (Characteristic Polynomial)

p(λ) = det(A− λI) is a monic polynomial of λ of degree n andcalled the characteristic polynomial of A.

e.g.

The characteristic polynomial for A =

[−1 4

1 −1

]p(λ) = det(A− λI) = λ2 + 2λ− 3

The eigenvalues of A ∈ Cn×n are the roots of its characteristicpolynomial.

Emre Mengi

Page 21: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Definition (Characteristic Polynomial)

p(λ) = det(A− λI) is a monic polynomial of λ of degree n andcalled the characteristic polynomial of A.

e.g.

The characteristic polynomial for A =

[−1 4

1 −1

]p(λ) = det(A− λI) = λ2 + 2λ− 3

The eigenvalues of A ∈ Cn×n are the roots of its characteristicpolynomial.

Emre Mengi

Page 22: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

For any polynomial there is an equivalent eigenvalue problemwhose eigenvalues are same as the roots of the polynomial.

Consider any polynomial of degree np(z) = anzn + an−1zn−1 + · · ·+ a1z + a0 where an 6= 0.

Define the monic polynomial p̃(z) = p(z)/an.

p̃(z) = zn +an−1

anzn−1 + · · ·+ a1

anz + a0

an

= zn + bn−1zn−1 + · · ·+ b1z + b0

Emre Mengi

Page 23: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

For any polynomial there is an equivalent eigenvalue problemwhose eigenvalues are same as the roots of the polynomial.

Consider any polynomial of degree np(z) = anzn + an−1zn−1 + · · ·+ a1z + a0 where an 6= 0.

Define the monic polynomial p̃(z) = p(z)/an.

p̃(z) = zn +an−1

anzn−1 + · · ·+ a1

anz + a0

an

= zn + bn−1zn−1 + · · ·+ b1z + b0

Emre Mengi

Page 24: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

For any polynomial there is an equivalent eigenvalue problemwhose eigenvalues are same as the roots of the polynomial.

Consider any polynomial of degree np(z) = anzn + an−1zn−1 + · · ·+ a1z + a0 where an 6= 0.

Define the monic polynomial p̃(z) = p(z)/an.

p̃(z) = zn +an−1

anzn−1 + · · ·+ a1

anz + a0

an

= zn + bn−1zn−1 + · · ·+ b1z + b0

Emre Mengi

Page 25: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

For any polynomial there is an equivalent eigenvalue problemwhose eigenvalues are same as the roots of the polynomial.

Consider any polynomial of degree np(z) = anzn + an−1zn−1 + · · ·+ a1z + a0 where an 6= 0.

Define the monic polynomial p̃(z) = p(z)/an.

p̃(z) = zn +an−1

anzn−1 + · · ·+ a1

anz + a0

an

= zn + bn−1zn−1 + · · ·+ b1z + b0

Emre Mengi

Page 26: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

For any polynomial there is an equivalent eigenvalue problemwhose eigenvalues are same as the roots of the polynomial.

Consider any polynomial of degree np(z) = anzn + an−1zn−1 + · · ·+ a1z + a0 where an 6= 0.

Define the monic polynomial p̃(z) = p(z)/an.

p̃(z) = zn +an−1

anzn−1 + · · ·+ a1

anz + a0

an

= zn + bn−1zn−1 + · · ·+ b1z + b0

Emre Mengi

Page 27: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Theorem (Roots and Companion Matrices)

λ is a root of p̃(z) = zn + bn−1zn−1 + bn−2zn−2 + · · ·+ b1z + b0⇐⇒

λ is an eigenvalue of the n × n companion matrix

C =

−bn−1 −bn−2 . . . −b1 −b0

1 0 . . . 0 00 1 0 0...

. . ....

0 0 1 0

Emre Mengi

Page 28: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Proof:Suppose p̃(λ) = 0. Then−bn−1 −bn−2 . . . −b1 −b0

1 0 . . . 0 00 1 0 0...

. . ....

0 0 1 0

λn−1

...λ1

=

−bn−1λ

n−1 − bn−2λn−2 − · · · − b0

λn−1

...λ

= λ

λn−1

...λ1

.Consequently, λ is an eigenvalue of C.

Emre Mengi

Page 29: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Proof:Suppose p̃(λ) = 0. Then−bn−1 −bn−2 . . . −b1 −b0

1 0 . . . 0 00 1 0 0...

. . ....

0 0 1 0

λn−1

...λ1

=

−bn−1λ

n−1 − bn−2λn−2 − · · · − b0

λn−1

...λ

= λ

λn−1

...λ1

.Consequently, λ is an eigenvalue of C.

Emre Mengi

Page 30: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Proof:Suppose p̃(λ) = 0. Then−bn−1 −bn−2 . . . −b1 −b0

1 0 . . . 0 00 1 0 0...

. . ....

0 0 1 0

λn−1

...λ1

=

−bn−1λ

n−1 − bn−2λn−2 − · · · − b0

λn−1

...λ

= λ

λn−1

...λ1

.Consequently, λ is an eigenvalue of C.

Emre Mengi

Page 31: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Proof:Suppose p̃(λ) = 0. Then−bn−1 −bn−2 . . . −b1 −b0

1 0 . . . 0 00 1 0 0...

. . ....

0 0 1 0

λn−1

...λ1

=

−bn−1λ

n−1 − bn−2λn−2 − · · · − b0

λn−1

...λ

= λ

λn−1

...λ1

.Consequently, λ is an eigenvalue of C.

Emre Mengi

Page 32: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Proof:Suppose p̃(λ) = 0. Then−bn−1 −bn−2 . . . −b1 −b0

1 0 . . . 0 00 1 0 0...

. . ....

0 0 1 0

λn−1

...λ1

=

−bn−1λ

n−1 − bn−2λn−2 − · · · − b0

λn−1

...λ

= λ

λn−1

...λ1

.Consequently, λ is an eigenvalue of C.

Emre Mengi

Page 33: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Conversely, suppose−bn−1 −bn−2 . . . −b1 −b0

1 0 . . . 0 00 1 0 0...

. . ....

0 0 1 0

v = λv

for some v 6= 0. Thenvk+1 = λvk =⇒ vk+1 = λkv1, k = 1, . . . ,n − 1

−bn−1vn − bn−2vn−1 · · · − b1v2 − b0v1 = λvn=⇒ −(λn−1bn−1 + λn−2bn−2 + · · ·+ λb1 + b0)v1 = λnv1=⇒ p̃(λ)v1 = 0

implying λ is a root of p̃(z).Emre Mengi

Page 34: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Conversely, suppose−bn−1 −bn−2 . . . −b1 −b0

1 0 . . . 0 00 1 0 0...

. . ....

0 0 1 0

v = λv

for some v 6= 0. Thenvk+1 = λvk =⇒ vk+1 = λkv1, k = 1, . . . ,n − 1

−bn−1vn − bn−2vn−1 · · · − b1v2 − b0v1 = λvn=⇒ −(λn−1bn−1 + λn−2bn−2 + · · ·+ λb1 + b0)v1 = λnv1=⇒ p̃(λ)v1 = 0

implying λ is a root of p̃(z).Emre Mengi

Page 35: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Conversely, suppose−bn−1 −bn−2 . . . −b1 −b0

1 0 . . . 0 00 1 0 0...

. . ....

0 0 1 0

v = λv

for some v 6= 0. Thenvk+1 = λvk =⇒ vk+1 = λkv1, k = 1, . . . ,n − 1

−bn−1vn − bn−2vn−1 · · · − b1v2 − b0v1 = λvn=⇒ −(λn−1bn−1 + λn−2bn−2 + · · ·+ λb1 + b0)v1 = λnv1=⇒ p̃(λ)v1 = 0

implying λ is a root of p̃(z).Emre Mengi

Page 36: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Conversely, suppose−bn−1 −bn−2 . . . −b1 −b0

1 0 . . . 0 00 1 0 0...

. . ....

0 0 1 0

v = λv

for some v 6= 0. Thenvk+1 = λvk =⇒ vk+1 = λkv1, k = 1, . . . ,n − 1

−bn−1vn − bn−2vn−1 · · · − b1v2 − b0v1 = λvn=⇒ −(λn−1bn−1 + λn−2bn−2 + · · ·+ λb1 + b0)v1 = λnv1=⇒ p̃(λ)v1 = 0

implying λ is a root of p̃(z).Emre Mengi

Page 37: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Conversely, suppose−bn−1 −bn−2 . . . −b1 −b0

1 0 . . . 0 00 1 0 0...

. . ....

0 0 1 0

v = λv

for some v 6= 0. Thenvk+1 = λvk =⇒ vk+1 = λkv1, k = 1, . . . ,n − 1

−bn−1vn − bn−2vn−1 · · · − b1v2 − b0v1 = λvn=⇒ −(λn−1bn−1 + λn−2bn−2 + · · ·+ λb1 + b0)v1 = λnv1=⇒ p̃(λ)v1 = 0

implying λ is a root of p̃(z).Emre Mengi

Page 38: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Conversely, suppose−bn−1 −bn−2 . . . −b1 −b0

1 0 . . . 0 00 1 0 0...

. . ....

0 0 1 0

v = λv

for some v 6= 0. Thenvk+1 = λvk =⇒ vk+1 = λkv1, k = 1, . . . ,n − 1

−bn−1vn − bn−2vn−1 · · · − b1v2 − b0v1 = λvn=⇒ −(λn−1bn−1 + λn−2bn−2 + · · ·+ λb1 + b0)v1 = λnv1=⇒ p̃(λ)v1 = 0

implying λ is a root of p̃(z).Emre Mengi

Page 39: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Example:Consider p(z) = z2 + 2z − 3 with the roots λ1 = −3, λ2 = 1.

The associated companion matrix is

C =[−2 3

1 0

]with the characteristic polynomial

det(C − λI) = det(−2− λ 3

1 −λ

)= λ2 + 2λ− 3

Emre Mengi

Page 40: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Example:Consider p(z) = z2 + 2z − 3 with the roots λ1 = −3, λ2 = 1.

The associated companion matrix is

C =[−2 3

1 0

]with the characteristic polynomial

det(C − λI) = det(−2− λ 3

1 −λ

)= λ2 + 2λ− 3

Emre Mengi

Page 41: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Example:Consider p(z) = z2 + 2z − 3 with the roots λ1 = −3, λ2 = 1.

The associated companion matrix is

C =[−2 3

1 0

]with the characteristic polynomial

det(C − λI) = det(−2− λ 3

1 −λ

)= λ2 + 2λ− 3

Emre Mengi

Page 42: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

Example:Consider p(z) = z2 + 2z − 3 with the roots λ1 = −3, λ2 = 1.

The associated companion matrix is

C =[−2 3

1 0

]with the characteristic polynomial

det(C − λI) = det(−2− λ 3

1 −λ

)= λ2 + 2λ− 3

Emre Mengi

Page 43: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

It was shown by N.H. Abel (in the 19th century) that thereis no algebraic formula for the roots of a polynomial ofdegree > 4.

Consequently, there can be no algorithm that can computeeigenvalues exactly in finitely many iterations.

If there was such an algorithm, then the roots of any polynomial could becomputed by means of the companion matrix.This would imply the existence of an algebraic formula for the roots of apolynomial (Contradicts with N. H. Abel’s result).

Need for iterative algorithms for eigenvalue computation

Emre Mengi

Page 44: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

It was shown by N.H. Abel (in the 19th century) that thereis no algebraic formula for the roots of a polynomial ofdegree > 4.

Consequently, there can be no algorithm that can computeeigenvalues exactly in finitely many iterations.

If there was such an algorithm, then the roots of any polynomial could becomputed by means of the companion matrix.This would imply the existence of an algebraic formula for the roots of apolynomial (Contradicts with N. H. Abel’s result).

Need for iterative algorithms for eigenvalue computation

Emre Mengi

Page 45: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

It was shown by N.H. Abel (in the 19th century) that thereis no algebraic formula for the roots of a polynomial ofdegree > 4.

Consequently, there can be no algorithm that can computeeigenvalues exactly in finitely many iterations.

If there was such an algorithm, then the roots of any polynomial could becomputed by means of the companion matrix.This would imply the existence of an algebraic formula for the roots of apolynomial (Contradicts with N. H. Abel’s result).

Need for iterative algorithms for eigenvalue computation

Emre Mengi

Page 46: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

It was shown by N.H. Abel (in the 19th century) that thereis no algebraic formula for the roots of a polynomial ofdegree > 4.

Consequently, there can be no algorithm that can computeeigenvalues exactly in finitely many iterations.

If there was such an algorithm, then the roots of any polynomial could becomputed by means of the companion matrix.This would imply the existence of an algebraic formula for the roots of apolynomial (Contradicts with N. H. Abel’s result).

Need for iterative algorithms for eigenvalue computation

Emre Mengi

Page 47: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenvalues and Polynomial Root Finding

It was shown by N.H. Abel (in the 19th century) that thereis no algebraic formula for the roots of a polynomial ofdegree > 4.

Consequently, there can be no algorithm that can computeeigenvalues exactly in finitely many iterations.

If there was such an algorithm, then the roots of any polynomial could becomputed by means of the companion matrix.This would imply the existence of an algebraic formula for the roots of apolynomial (Contradicts with N. H. Abel’s result).

Need for iterative algorithms for eigenvalue computation

Emre Mengi

Page 48: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Algebraic Multiplicity

Theorem (Eigenvalues and Characteristic Polynomial)

λ is an eigenvalue of A⇐⇒ det(A− λI) = 0

Corollary of the TheoremSince

p(λ) = det(A− λI) = anλn + · · ·+ a1λ+ a0

is a polynomial of degree n, A has n (possibly complex)eigenvalues (counting the multiplicities).

Definition (Algebraic Multiplicity)

Let λ ∈ C be an eigenvalue of A ∈ Cn×n. The multiplicity of λ asa root of p(λ) = det(A− λI) is called the algebraic multip. of λ.

Emre Mengi

Page 49: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Algebraic Multiplicity

Theorem (Eigenvalues and Characteristic Polynomial)

λ is an eigenvalue of A⇐⇒ det(A− λI) = 0

Corollary of the TheoremSince

p(λ) = det(A− λI) = anλn + · · ·+ a1λ+ a0

is a polynomial of degree n, A has n (possibly complex)eigenvalues (counting the multiplicities).

Definition (Algebraic Multiplicity)

Let λ ∈ C be an eigenvalue of A ∈ Cn×n. The multiplicity of λ asa root of p(λ) = det(A− λI) is called the algebraic multip. of λ.

Emre Mengi

Page 50: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Algebraic Multiplicity

Theorem (Eigenvalues and Characteristic Polynomial)

λ is an eigenvalue of A⇐⇒ det(A− λI) = 0

Corollary of the TheoremSince

p(λ) = det(A− λI) = anλn + · · ·+ a1λ+ a0

is a polynomial of degree n, A has n (possibly complex)eigenvalues (counting the multiplicities).

Definition (Algebraic Multiplicity)

Let λ ∈ C be an eigenvalue of A ∈ Cn×n. The multiplicity of λ asa root of p(λ) = det(A− λI) is called the algebraic multip. of λ.

Emre Mengi

Page 51: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Calculation of Eigenvectors

Calculation of Eigenvectors

Let λ ∈ C be an eigenvalue of A ∈ Cn×n.Then v is an eigenvector associated with λ⇐⇒ (A− λI)v = 0and v 6= 0.

Example:

The matrix A =

[−1 4

1 −1

]has eigenvalues λ1 = −3, λ2 = 1.

Emre Mengi

Page 52: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Calculation of Eigenvectors

Calculation of Eigenvectors

Let λ ∈ C be an eigenvalue of A ∈ Cn×n.Then v is an eigenvector associated with λ⇐⇒ (A− λI)v = 0and v 6= 0.

Example:

The matrix A =

[−1 4

1 −1

]has eigenvalues λ1 = −3, λ2 = 1.

Emre Mengi

Page 53: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Calculation of Eigenvectors

Find an eigenvector v1 associated with λ1 = −3 (below c 6= 0)([−1 4

1 −1

]− (−3)

[1 00 1

])v1 =

[2 41 2

]v1 = 0

=⇒ v1 = c[−2

1

]

Finding an eigenvector v2 associated with λ2 = 1 (below c 6= 0)([−1 4

1 −1

]− 1

[1 00 1

])v1 =

[−2 4

1 −2

]v2 = 0

=⇒ v2 = c[

21

]

Emre Mengi

Page 54: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Calculation of Eigenvectors

Find an eigenvector v1 associated with λ1 = −3 (below c 6= 0)([−1 4

1 −1

]− (−3)

[1 00 1

])v1 =

[2 41 2

]v1 = 0

=⇒ v1 = c[−2

1

]

Finding an eigenvector v2 associated with λ2 = 1 (below c 6= 0)([−1 4

1 −1

]− 1

[1 00 1

])v1 =

[−2 4

1 −2

]v2 = 0

=⇒ v2 = c[

21

]

Emre Mengi

Page 55: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Calculation of Eigenvectors

Find an eigenvector v1 associated with λ1 = −3 (below c 6= 0)([−1 4

1 −1

]− (−3)

[1 00 1

])v1 =

[2 41 2

]v1 = 0

=⇒ v1 = c[−2

1

]

Finding an eigenvector v2 associated with λ2 = 1 (below c 6= 0)([−1 4

1 −1

]− 1

[1 00 1

])v1 =

[−2 4

1 −2

]v2 = 0

=⇒ v2 = c[

21

]

Emre Mengi

Page 56: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Calculation of Eigenvectors

Find an eigenvector v1 associated with λ1 = −3 (below c 6= 0)([−1 4

1 −1

]− (−3)

[1 00 1

])v1 =

[2 41 2

]v1 = 0

=⇒ v1 = c[−2

1

]

Finding an eigenvector v2 associated with λ2 = 1 (below c 6= 0)([−1 4

1 −1

]− 1

[1 00 1

])v1 =

[−2 4

1 −2

]v2 = 0

=⇒ v2 = c[

21

]

Emre Mengi

Page 57: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Calculation of Eigenvectors

Find an eigenvector v1 associated with λ1 = −3 (below c 6= 0)([−1 4

1 −1

]− (−3)

[1 00 1

])v1 =

[2 41 2

]v1 = 0

=⇒ v1 = c[−2

1

]

Finding an eigenvector v2 associated with λ2 = 1 (below c 6= 0)([−1 4

1 −1

]− 1

[1 00 1

])v1 =

[−2 4

1 −2

]v2 = 0

=⇒ v2 = c[

21

]

Emre Mengi

Page 58: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Calculation of Eigenvectors

Find an eigenvector v1 associated with λ1 = −3 (below c 6= 0)([−1 4

1 −1

]− (−3)

[1 00 1

])v1 =

[2 41 2

]v1 = 0

=⇒ v1 = c[−2

1

]

Finding an eigenvector v2 associated with λ2 = 1 (below c 6= 0)([−1 4

1 −1

]− 1

[1 00 1

])v1 =

[−2 4

1 −2

]v2 = 0

=⇒ v2 = c[

21

]

Emre Mengi

Page 59: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenspace

Definition (Eigenspace)

Let λ be an eigenvalue of A ∈ Cn×n. The set Eλ = Null(A− λI)is called the eigenspace of A associated with λ.

Eλ = (set of eigenvectors of A assoc. with λ) ∪ {0}

Eλ is also called an invariant subspace of A, sincex ∈ Eλ =⇒ Ax = λx ∈ Eλ

that is {Ax : x ∈ Eλ} ⊆ Eλ.

Emre Mengi

Page 60: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenspace

Definition (Eigenspace)

Let λ be an eigenvalue of A ∈ Cn×n. The set Eλ = Null(A− λI)is called the eigenspace of A associated with λ.

Eλ = (set of eigenvectors of A assoc. with λ) ∪ {0}

Eλ is also called an invariant subspace of A, sincex ∈ Eλ =⇒ Ax = λx ∈ Eλ

that is {Ax : x ∈ Eλ} ⊆ Eλ.

Emre Mengi

Page 61: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenspace

Definition (Eigenspace)

Let λ be an eigenvalue of A ∈ Cn×n. The set Eλ = Null(A− λI)is called the eigenspace of A associated with λ.

Eλ = (set of eigenvectors of A assoc. with λ) ∪ {0}

Eλ is also called an invariant subspace of A, sincex ∈ Eλ =⇒ Ax = λx ∈ Eλ

that is {Ax : x ∈ Eλ} ⊆ Eλ.

Emre Mengi

Page 62: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenspace

Definition (Eigenspace)

Let λ be an eigenvalue of A ∈ Cn×n. The set Eλ = Null(A− λI)is called the eigenspace of A associated with λ.

Eλ = (set of eigenvectors of A assoc. with λ) ∪ {0}

Eλ is also called an invariant subspace of A, sincex ∈ Eλ =⇒ Ax = λx ∈ Eλ

that is {Ax : x ∈ Eλ} ⊆ Eλ.

Emre Mengi

Page 63: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Eigenspace

Definition (Eigenspace)

Let λ be an eigenvalue of A ∈ Cn×n. The set Eλ = Null(A− λI)is called the eigenspace of A associated with λ.

Eλ = (set of eigenvectors of A assoc. with λ) ∪ {0}

Eλ is also called an invariant subspace of A, sincex ∈ Eλ =⇒ Ax = λx ∈ Eλ

that is {Ax : x ∈ Eλ} ⊆ Eλ.

Emre Mengi

Page 64: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Geometric Multiplicity

e.g.

For A =

[−1 4

1 −1

]with the eigenvalues λ1 = −3, λ2 = 1

Eλ1 = span{[−2

1

]}and Eλ2 = span

{[21

]}.

Definition (Geometric Multiplicity)

Let λ ∈ C be an eigenvalue of A ∈ Cn×n. The dimension of theeigenspace Eλ = Null(A− λI) associated with λ is called thegeometric multiplicity of λ.

Emre Mengi

Page 65: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Geometric Multiplicity

e.g.

For A =

[−1 4

1 −1

]with the eigenvalues λ1 = −3, λ2 = 1

Eλ1 = span{[−2

1

]}and Eλ2 = span

{[21

]}.

Definition (Geometric Multiplicity)

Let λ ∈ C be an eigenvalue of A ∈ Cn×n. The dimension of theeigenspace Eλ = Null(A− λI) associated with λ is called thegeometric multiplicity of λ.

Emre Mengi

Page 66: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Geometric Multiplicity

e.g.

For A =

[−1 4

1 −1

]with the eigenvalues λ1 = −3, λ2 = 1

Eλ1 = span{[−2

1

]}and Eλ2 = span

{[21

]}.

Definition (Geometric Multiplicity)

Let λ ∈ C be an eigenvalue of A ∈ Cn×n. The dimension of theeigenspace Eλ = Null(A− λI) associated with λ is called thegeometric multiplicity of λ.

Emre Mengi

Page 67: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Mass-Spring Systems

c = 3N.sec/m

Spring constant

Friction constant

m = 1kg

k = 2N/m Motion of vibrating structures isgoverned by eigenvalues.

By Newton’s law of motionNet Force = ma(t)

The friction and springs apply forces against displacementNet Force = −c v(t)− k x(t)Emre Mengi

Page 68: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Mass-Spring Systems

c = 3N.sec/m

Spring constant

Friction constant

m = 1kg

k = 2N/m Motion of vibrating structures isgoverned by eigenvalues.

By Newton’s law of motionNet Force = ma(t)

The friction and springs apply forces against displacementNet Force = −c v(t)− k x(t)Emre Mengi

Page 69: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Mass-Spring Systems

c = 3N.sec/m

Spring constant

Friction constant

m = 1kg

k = 2N/m Motion of vibrating structures isgoverned by eigenvalues.

By Newton’s law of motionNet Force = ma(t)

The friction and springs apply forces against displacementNet Force = −c v(t)− k x(t)Emre Mengi

Page 70: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Mass Spring Systems

Notationx(t) : displacement v(t) = x ′(t) : velocity

a(t) = x ′′(t) : acceleration

Combining the equations for the net force yields

ma(t) = −cv(t)− kx(t)=⇒

mx ′′(t) = −cx ′(t)− kx(t)=⇒

x ′′(t) = −3x ′(t)− 2x(t)=⇒

x ′′(t) + 3x ′(t) + 2x(t) = 0Emre Mengi

Page 71: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Mass Spring Systems

Notationx(t) : displacement v(t) = x ′(t) : velocity

a(t) = x ′′(t) : acceleration

Combining the equations for the net force yields

ma(t) = −cv(t)− kx(t)=⇒

mx ′′(t) = −cx ′(t)− kx(t)=⇒

x ′′(t) = −3x ′(t)− 2x(t)=⇒

x ′′(t) + 3x ′(t) + 2x(t) = 0Emre Mengi

Page 72: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Mass Spring Systems

Notationx(t) : displacement v(t) = x ′(t) : velocity

a(t) = x ′′(t) : acceleration

Combining the equations for the net force yields

ma(t) = −cv(t)− kx(t)=⇒

mx ′′(t) = −cx ′(t)− kx(t)=⇒

x ′′(t) = −3x ′(t)− 2x(t)=⇒

x ′′(t) + 3x ′(t) + 2x(t) = 0Emre Mengi

Page 73: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Mass Spring Systems

Notationx(t) : displacement v(t) = x ′(t) : velocity

a(t) = x ′′(t) : acceleration

Combining the equations for the net force yields

ma(t) = −cv(t)− kx(t)=⇒

mx ′′(t) = −cx ′(t)− kx(t)=⇒

x ′′(t) = −3x ′(t)− 2x(t)=⇒

x ′′(t) + 3x ′(t) + 2x(t) = 0Emre Mengi

Page 74: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Mass Spring Systems

Notationx(t) : displacement v(t) = x ′(t) : velocity

a(t) = x ′′(t) : acceleration

Combining the equations for the net force yields

ma(t) = −cv(t)− kx(t)=⇒

mx ′′(t) = −cx ′(t)− kx(t)=⇒

x ′′(t) = −3x ′(t)− 2x(t)=⇒

x ′′(t) + 3x ′(t) + 2x(t) = 0Emre Mengi

Page 75: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Mass Spring Systems

Notationx(t) : displacement v(t) = x ′(t) : velocity

a(t) = x ′′(t) : acceleration

The equation of motion

x ′′(t) + 3x ′(t) + 2x(t) = 0

can be expressed in terms of v(t) and x(t).

v ′(t) + 3v(t) + 2x(t) = 0−v(t) + x ′(t) = 0

Emre Mengi

Page 76: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Mass Spring Systems

Notationx(t) : displacement v(t) = x ′(t) : velocity

a(t) = x ′′(t) : acceleration

The equation of motion

x ′′(t) + 3x ′(t) + 2x(t) = 0

can be expressed in terms of v(t) and x(t).

v ′(t) + 3v(t) + 2x(t) = 0−v(t) + x ′(t) = 0

Emre Mengi

Page 77: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Mass Spring Systems

[v ′(t)x ′(t)

]︸ ︷︷ ︸

y ′(t)

=

[−3 −2

1 0

]︸ ︷︷ ︸

A

[v(t)x(t)

]︸ ︷︷ ︸

y(t)

A =

[−3 −2

1 0

]

has the eigenvalues λ1 = −2 and λ2 = −1

with the assoc. eigenvectors v1 =

[−2

1

]and v2 =

[−1

1

].

Emre Mengi

Page 78: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Mass Spring Systems

[v ′(t)x ′(t)

]︸ ︷︷ ︸

y ′(t)

=

[−3 −2

1 0

]︸ ︷︷ ︸

A

[v(t)x(t)

]︸ ︷︷ ︸

y(t)

A =

[−3 −2

1 0

]

has the eigenvalues λ1 = −2 and λ2 = −1

with the assoc. eigenvectors v1 =

[−2

1

]and v2 =

[−1

1

].

Emre Mengi

Page 79: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Mass Spring Systems

The solution for the system y ′(t) = Ay(t) is of the form

y(t) = c1eλ1tv1 + c2eλ2tv2

= c1e−2t[−2

1

]+ c2e−t

[−1

1

].

Verify that y(t) = c1eλ1tv1 + c2eλ2tv2 is a solution

y ′(t) = λ1v1c1eλ1t + λ2v2c2eλ2t

= Av1(c1eλ1t) + Av2(c2eλ2t)= A(c1eλ1tv1 + c2eλ2tv2)= Ay(t)

Emre Mengi

Page 80: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Mass Spring Systems

The solution for the system y ′(t) = Ay(t) is of the form

y(t) = c1eλ1tv1 + c2eλ2tv2

= c1e−2t[−2

1

]+ c2e−t

[−1

1

].

Verify that y(t) = c1eλ1tv1 + c2eλ2tv2 is a solution

y ′(t) = λ1v1c1eλ1t + λ2v2c2eλ2t

= Av1(c1eλ1t) + Av2(c2eλ2t)= A(c1eλ1tv1 + c2eλ2tv2)= Ay(t)

Emre Mengi

Page 81: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Mass Spring Systems

The solution for the system y ′(t) = Ay(t) is of the form

y(t) = c1eλ1tv1 + c2eλ2tv2

= c1e−2t[−2

1

]+ c2e−t

[−1

1

].

Verify that y(t) = c1eλ1tv1 + c2eλ2tv2 is a solution

y ′(t) = λ1v1c1eλ1t + λ2v2c2eλ2t

= Av1(c1eλ1t) + Av2(c2eλ2t)= A(c1eλ1tv1 + c2eλ2tv2)= Ay(t)

Emre Mengi

Page 82: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Mass Spring Systems

The solution for the system y ′(t) = Ay(t) is of the form

y(t) = c1eλ1tv1 + c2eλ2tv2

= c1e−2t[−2

1

]+ c2e−t

[−1

1

].

Verify that y(t) = c1eλ1tv1 + c2eλ2tv2 is a solution

y ′(t) = λ1v1c1eλ1t + λ2v2c2eλ2t

= Av1(c1eλ1t) + Av2(c2eλ2t)= A(c1eλ1tv1 + c2eλ2tv2)= Ay(t)

Emre Mengi

Page 83: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Mass Spring Systems

The solution for the system y ′(t) = Ay(t) is of the form

y(t) = c1eλ1tv1 + c2eλ2tv2

= c1e−2t[−2

1

]+ c2e−t

[−1

1

].

Verify that y(t) = c1eλ1tv1 + c2eλ2tv2 is a solution

y ′(t) = λ1v1c1eλ1t + λ2v2c2eλ2t

= Av1(c1eλ1t) + Av2(c2eλ2t)= A(c1eλ1tv1 + c2eλ2tv2)= Ay(t)

Emre Mengi

Page 84: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Mass Spring Systems

The solution for the system y ′(t) = Ay(t) is of the form

y(t) = c1eλ1tv1 + c2eλ2tv2

= c1e−2t[−2

1

]+ c2e−t

[−1

1

].

Verify that y(t) = c1eλ1tv1 + c2eλ2tv2 is a solution

y ′(t) = λ1v1c1eλ1t + λ2v2c2eλ2t

= Av1(c1eλ1t) + Av2(c2eλ2t)= A(c1eλ1tv1 + c2eλ2tv2)= Ay(t)

Emre Mengi

Page 85: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Mass Spring Systems

The solution for the system y ′(t) = Ay(t) is of the form

y(t) = c1eλ1tv1 + c2eλ2tv2

= c1e−2t[−2

1

]+ c2e−t

[−1

1

].

Verify that y(t) = c1eλ1tv1 + c2eλ2tv2 is a solution

y ′(t) = λ1v1c1eλ1t + λ2v2c2eλ2t

= Av1(c1eλ1t) + Av2(c2eλ2t)= A(c1eλ1tv1 + c2eλ2tv2)= Ay(t)

Emre Mengi

Page 86: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Differential Equations

Suppose A ∈ Rn×n. Consider the differential equation

y ′(t) = Ay(t).

Assume that A has n distinct eigenvalues.Denote the eigenvalues with λ1, . . . , λn, andthe associated eigenvectors with v1, . . . , vn.

The solution y(t) : R→ Cn is of the form

y(t) = c1eλ1tv1 + c2eλ2tv2 + · · ·+ cneλntvn

Emre Mengi

Page 87: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Differential Equations

Suppose A ∈ Rn×n. Consider the differential equation

y ′(t) = Ay(t).

Assume that A has n distinct eigenvalues.Denote the eigenvalues with λ1, . . . , λn, andthe associated eigenvectors with v1, . . . , vn.

The solution y(t) : R→ Cn is of the form

y(t) = c1eλ1tv1 + c2eλ2tv2 + · · ·+ cneλntvn

Emre Mengi

Page 88: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Differential Equations

Suppose A ∈ Rn×n. Consider the differential equation

y ′(t) = Ay(t).

Assume that A has n distinct eigenvalues.Denote the eigenvalues with λ1, . . . , λn, andthe associated eigenvectors with v1, . . . , vn.

The solution y(t) : R→ Cn is of the form

y(t) = c1eλ1tv1 + c2eλ2tv2 + · · ·+ cneλntvn

Emre Mengi

Page 89: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Differential Equations

y(t) = c1eλ1tv1 + c2eλ2tv2 + · · ·+ cneλntvn

Consider an eigenvalue λk = <λk + i=λk where <λk ,=λk ∈ R.

ckeλk tvk = ck

(et<λk

)︸ ︷︷ ︸amplitude

(eit=λk

)︸ ︷︷ ︸frequency

vk

The amplitude of the vibrations (i.e. ‖y(t)‖) depend onet<λk , therefore the real part of λk .The frequency of the vibrations depend on

eit=λk = cos(t=λk ) + i sin(t=λk ),therefore the imaginary part of λk .

Emre Mengi

Page 90: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Differential Equations

y(t) = c1eλ1tv1 + c2eλ2tv2 + · · ·+ cneλntvn

Consider an eigenvalue λk = <λk + i=λk where <λk ,=λk ∈ R.

ckeλk tvk = ck

(et<λk

)︸ ︷︷ ︸amplitude

(eit=λk

)︸ ︷︷ ︸frequency

vk

The amplitude of the vibrations (i.e. ‖y(t)‖) depend onet<λk , therefore the real part of λk .The frequency of the vibrations depend on

eit=λk = cos(t=λk ) + i sin(t=λk ),therefore the imaginary part of λk .

Emre Mengi

Page 91: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Differential Equations

y(t) = c1eλ1tv1 + c2eλ2tv2 + · · ·+ cneλntvn

Consider an eigenvalue λk = <λk + i=λk where <λk ,=λk ∈ R.

ckeλk tvk = ck

(et<λk

)︸ ︷︷ ︸amplitude

(eit=λk

)︸ ︷︷ ︸frequency

vk

The amplitude of the vibrations (i.e. ‖y(t)‖) depend onet<λk , therefore the real part of λk .The frequency of the vibrations depend on

eit=λk = cos(t=λk ) + i sin(t=λk ),therefore the imaginary part of λk .

Emre Mengi

Page 92: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Differential Equations

y(t) = c1eλ1tv1 + c2eλ2tv2 + · · ·+ cneλntvn

Consider an eigenvalue λk = <λk + i=λk where <λk ,=λk ∈ R.

ckeλk tvk = ck

(et<λk

)︸ ︷︷ ︸amplitude

(eit=λk

)︸ ︷︷ ︸frequency

vk

The amplitude of the vibrations (i.e. ‖y(t)‖) depend onet<λk , therefore the real part of λk .The frequency of the vibrations depend on

eit=λk = cos(t=λk ) + i sin(t=λk ),therefore the imaginary part of λk .

Emre Mengi

Page 93: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Stability

The system y ′(t) = Ay(t) is called asymptotically stable iffor all initial conditions y(0) ∈ Rn

y(t)→ 0 as t →∞.

Asymptotic stability is equivalent toet<λk → 0 as t →∞ ⇐⇒ <λk < 0

for each k = 1, . . . ,n

Emre Mengi

Page 94: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Stability

The system y ′(t) = Ay(t) is called asymptotically stable iffor all initial conditions y(0) ∈ Rn

y(t)→ 0 as t →∞.

Asymptotic stability is equivalent toet<λk → 0 as t →∞ ⇐⇒ <λk < 0

for each k = 1, . . . ,n

Emre Mengi

Page 95: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Stability

The system y ′(t) = Ay(t) is called asymptotically stable iffor all initial conditions y(0) ∈ Rn

y(t)→ 0 as t →∞.

Asymptotic stability is equivalent toet<λk → 0 as t →∞ ⇐⇒ <λk < 0

for each k = 1, . . . ,n

Emre Mengi

Page 96: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Stability

Asymptotic Stability

The system y ′(t) = Ay(t) is asymptotically stable⇐⇒

All of the eigenvalues of A have negative real parts

Example:The system

y ′(t) =[−3 −2

1 0

]y(t)

with eigenvalues λ1 = −2, λ2 = −1 is asymptotically stable.

Emre Mengi

Page 97: Eigenvalues - Basicshome.ku.edu.tr/~emengi/teaching/math504_f2011/Lecture21_new.pdfFor any eigenvalue problem there is an equivalent polynomial root-finding problem. Theorem (Eigenvalues

Basic DefinitionsMotivation

Stability

Asymptotic Stability

The system y ′(t) = Ay(t) is asymptotically stable⇐⇒

All of the eigenvalues of A have negative real parts

Example:The system

y ′(t) =[−3 −2

1 0

]y(t)

with eigenvalues λ1 = −2, λ2 = −1 is asymptotically stable.

Emre Mengi