Top Banner
Magnetotransport in nanostructures Universidade Federal do Rio de Janeiro Instituto de Física José d’Albuquerque e Castro PAN AMERICAN ADVANCED STUDIES INSTITUTE Ultrafast and Ultrasmall; New Frontiers and AMO Physics March 30 - April 11, 2008
33

Magnetotransport in nanostructures

Nov 16, 2014

Download

Documents

Magnetotransport in nanostructures, José d’Albuquerque e Castro, Universidade Federal do Rio de Janeiro
Instituto de Física
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Magnetotransport in nanostructures

Magnetotransport in nanostructures

Universidade Federal do Rio de Janeiro Instituto de Física

José d’Albuquerque e Castro

PAN AMERICAN ADVANCED STUDIES INSTITUTE Ultrafast and Ultrasmall; New Frontiers and AMO Physics

March 30 - April 11, 2008

Page 2: Magnetotransport in nanostructures

Nanostructures

•  Structure and composition: nanometer scale ⇒  ultra fine films and multilayered structures ⇒  quantum wires and dots ⇒  granular systems etc.

•  Main interest

⇒  distinct physical properties ⇒  confinement effects (quantum interference) ⇒  possibility of controlling their physical properties ⇒  technological applications

Page 3: Magnetotransport in nanostructures

•  1988: Albert Fert/Peter Grünberg (Nobel Prize 2007)

Giant magnetoresistance

AF FM

H=0 H

Page 4: Magnetotransport in nanostructures

two currents

AF FM

Source of the effect: spin dependent scattering

Giant magnetoresistance

Page 5: Magnetotransport in nanostructures

Giant magnetoresistance

•  Source of the effect: spin dependent scattering

•  It may occur in both regimes: ⇒ diffusive ⇒ ballistic

•  Diffusive regime: the usual approach is based on the Boltzmann formalism

⇒ R. E. Camley and J. Barnás, PRL 63, 664 (1989) ⇒ R. Q. Hood and L. M. Falicov, PRB 46, 8287 (1992)

Page 6: Magnetotransport in nanostructures

Boltzmann theory

Semiclassical theory of transport

⇒ Bloch states

•  crystalline system: H0

translational symmetry ⇒

Page 7: Magnetotransport in nanostructures

Boltzmann theory

Semiclassical theory of transport

⇒ Bloch states

•  Wannier states

•  crystalline system: H0

translational symmetry ⇒

Page 8: Magnetotransport in nanostructures

•  for slowly varying potential V

•  external potential V( r )

Wannier ⇒

⇒ fn( r ,t) = envelope function

NB: interband transitions n → n’ have been neglected

Page 9: Magnetotransport in nanostructures

•  example

Ga As

Page 10: Magnetotransport in nanostructures

•  semiclassical approximation (correspondence principle)

•  semiclassical equations of motion

with

the wave packet follows the classical trajectory determined by the corresponding classical Hamiltonian

Page 11: Magnetotransport in nanostructures

•  trajectories in phase space

r

koccupied empty

•  validity

V(x)

λ

Δx a0

λ >> Δx >> a0

Page 12: Magnetotransport in nanostructures

•  trajectories in phase space

r

koccupied empty

•  validity

V(x)

λ

Δx a0

λ >> Δx >> a0

Page 13: Magnetotransport in nanostructures

•  trajectories in phase space

r

koccupied empty

•  validity

V(x)

λ

Δx a0

λ >> Δx >> a0

Page 14: Magnetotransport in nanostructures

•  distribution function:

density of occupied states in the phase space at time t

⇒  equilibrium (V=0) distribution:

⇒  electric current:

Page 15: Magnetotransport in nanostructures

• equation for the distribution function

• Boltzmann equation

⇒  Liouville theorem

• relaxation time approximation

τ = relaxation time

Page 16: Magnetotransport in nanostructures

•  Ohm’s law

(cubic symmetry)

⇒  electron gas: σ = ne2τ /m

•  Conductance A

L

W

L

Page 17: Magnetotransport in nanostructures

•  ballistic regime

linear dimensions << mean free path

⇒  finite conductance !

W

ballistic conductor

Page 18: Magnetotransport in nanostructures

B. J. van Wees et al.

Page 19: Magnetotransport in nanostructures

Giant magnetoresistance

•  Boltzmann formalism: distribution function

I II

z

•  Important point: no interference between and

Page 20: Magnetotransport in nanostructures

Giant magnetoresistance

•  Ballistic regime (λ >> L): Landauer formalism

ε = (µ1−µ2) /evoltage drop

M = # channels between µ1 and µ2

Page 21: Magnetotransport in nanostructures

T

I1+ I2

+

ε I1- €

I1+ =

2eh

M µ1−µ2[ ]

I2+ =

2eh

MT µ1−µ2[ ]

G =I

µ1−µ2( ) /e=2e2

h

MT

I1− =

2eh

M (1−T) µ1−µ2[ ]

Giant magnetoresistance

Page 22: Magnetotransport in nanostructures

two current model

Rα = Gα↑ + Gα

↓( )−1

translational symmetry

α = FM, AF

Magnetotransport in multilayers

Page 23: Magnetotransport in nanostructures

Magnetotransport in multilayers

•  How could the magnetoresistance ratio be enhanced?

•  Would it be possible to have in such systems an insulating antiferromagnetic configuration ( )?

•  Could interference effects lead to such situation?

Page 24: Magnetotransport in nanostructures

Usual situation

EF uniform spacer

ferromagnetic band structure

Page 25: Magnetotransport in nanostructures

Uniform spacer

FM

AF

Page 26: Magnetotransport in nanostructures

Modulated spacer

EF

Page 27: Magnetotransport in nanostructures

Modulated spacer

EF

Page 28: Magnetotransport in nanostructures

Modulated spacer

EF

transmission bands

transmission gaps

transmission bands

Page 29: Magnetotransport in nanostructures

Ferromagnetic configuration

Page 30: Magnetotransport in nanostructures

Antiferromagnetic configuration

Page 31: Magnetotransport in nanostructures

Transmission coefficients

“Enhanced magnetoresistance effect in layered systems” M. S. Ferreira, J. dA.C., R. B. Muniz and Murielle Villeret,

Appl. Phys. Lett. 75, 2307 (1999)

Page 32: Magnetotransport in nanostructures

Modulated spacer

Interesting features:

⇒ huge magnetoresitance ratio

⇒ spin filtering effect

⇒ Could be used as a logical gate

Page 33: Magnetotransport in nanostructures

Modulated spacer

•  Challenge: to find real materials which could be used to fabricate such a device