Top Banner
M. Reinelt, K. Schmid, K. Krieger WG High-Z Ljubljana 01.10.200 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany Extended grid DIVIMP erosion deposition modelling
28

M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Mar 27, 2015

Download

Documents

Jaden Trujillo
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

M. Reinelt, K. Schmid, K. Krieger

SEWG High-Z Ljubljana 01.10.2009

Max-Planck-Institut für PlasmaphysikEURATOM Association, Garching b. München, Germany

Extended grid DIVIMP erosion deposition modelling

Page 2: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Outline

Question:Steady state surface composition of the ITER first wall ?

Our conceptual approach & strategy

Standard and extended grids for DIVIMP

Modeling of material mixing Modeling of plasma impurity generation Modeling of chemical phase formations

"Work in progress"

Question:Steady state surface composition of the ITER first wall ?

Our conceptual approach & strategy

Standard and extended grids for DIVIMP

Modeling of material mixing Modeling of plasma impurity generation Modeling of chemical phase formations

"Work in progress"

Page 3: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Motivation

What are the steady state surface concentrations of the ITER first wall ?

Initial surface composition

Initial surface composition

Plasma impurityconcentration

Plasma impurityconcentration

Erosion by hydrogen

Bulk material

Bulk material

Temperature

Re-deposition

Erosion by impuritiesand self sputtering

Deposition

Plasma transport

Sublimation Diffusion

Phase formations

Layer growth

Dynamic surface composition

Dynamic surface composition

Steady state surface:Total flux balance

Steady state surface:Total flux balance

Page 4: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Simplifications

Assumption 1: Plasma transport is instantaneous

Erosion by hydrogen

Re-deposition

Erosion by impuritiesand self sputtering

Deposition

INSTANTPlasma transport

Sublimation

Dynamic surface composition

Dynamic surface composition

Bulk material

Bulk material

Temperature

Diffusion

Phase formations

Layer growth

Page 5: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Simplifications

Erosion by hydrogen Temperature

Re-deposition

Erosion by impuritiesand self sputtering

Deposition

INSTANTPlasma transport

Sublimation Diffusion

Phase formations

Layer growth

CONSTANTbulk composition

Dynamic surface composition

Dynamic surface composition

Assumption 1: Plasma transport is instantaneousAssumption 2: Bulk composition is constant

All processes depend primarily on the concentrations in the near surface region.

All processes depend primarily on the concentrations in the near surface region.

Page 6: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Conceptual approach

DIVIMPDIVIMP

Plasma transport ofimpurities

Expected results:

* Steady state wall concentrations & erosion fluxes* Plasma impurity concentrations

Benchmark results with JET experiments Extrapolate to ITER

ERODEPDIF:Flux balances

ERODEPDIF:Flux balances

Background plasma

OEDGE(OSM)

OEDGE(OSM)

SOLPS(B2+Eirene)

SOLPS(B2+Eirene)

CARRE,recent codes

CARRE,recent codes

Grid

• Diffusion• Sublimation• Chemical phase formation

Impurity generation

SDTrimSDTrim

Materials properties

Materials properties

Page 7: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Conceptual approach

DIVIMPDIVIMP

Plasma transport ofimpurities

ERODEPDIF:Flux balances

ERODEPDIF:Flux balances

Background plasma

OEDGE(OSM)

OEDGE(OSM)

SOLPS(B2+Eirene)

SOLPS(B2+Eirene)

CARRE,recent codes

CARRE,recent codes

Grid

• Diffusion• Sublimation• Chemical phase formation

Impurity generation

SDTrimSDTrim

Materials properties

Materials properties

Page 8: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Conceptual approach

DIVIMPDIVIMP

Plasma transport ofimpurities

ERODEPDIF:Flux balances

ERODEPDIF:Flux balances

Background plasma

OEDGE(OSM)

OEDGE(OSM)

SOLPS(B2+Eirene)

SOLPS(B2+Eirene)

CARRE,recent codes

CARRE,recent codes

Grid

• Diffusion• Sublimation• Chemical phase formation

Impurity generation

SDTrimSDTrim

Materials properties

Materials properties

Page 9: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Extended grid (EG)

JET SG(Standard grid)

JET SG(Standard grid)

JET EG [1](Extended grid)

JET EG [1](Extended grid)

[1] By S. Lisgo

Page 10: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Extended grid (EG)

... to be filled with plasma

Page 11: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Conceptual approach

DIVIMPDIVIMP

Plasma transport ofimpurities

ERODEPDIF:Flux balances

ERODEPDIF:Flux balances

Background plasma

OEDGE(OSM)

OEDGE(OSM)

SOLPS(B2+Eirene)

SOLPS(B2+Eirene)

CARRE,recent codes

CARRE,recent codes

Grid

• Diffusion• Sublimation• Chemical phase formation

Impurity generation

SDTrimSDTrim

Materials properties

Materials properties

Material mixing model

Page 12: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Material mixing

Plasma

Each tile receives a flux due to erosion & re-deposition from other tilesPlasma transport is characterized by a re-deposition matrix:

i on tile up ends that j tilefrom melement offlux eroded ofFraction , mjir

Flux of material m on tile i:

n

j

mji

Dj

mj

mjm

i rYxN

tt

1,

Result: Set of n coupled differential / algebraic equationsResult: Set of n coupled differential / algebraic equations

Concept: The first wall is divided into n tilesConcept: The first wall is divided into n tiles

Page 13: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Mixed material formation

Plasma

BulkReactionzone

Backgroundplasma

Concept: Each tile is composed of a thin reaction zone and a bulk materialConcept: Each tile is composed of a thin reaction zone and a bulk material

Allows layer growth and erosion, sublimation and simplified chemistry. No diffusion!Allows layer growth and erosion, sublimation and simplified chemistry. No diffusion!

* Constant thickness Collision cascades:

< 50 nm* Variable composition

* Constant source / sink

* Constant composition

Page 14: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Mixed material formation

Bulk

For n-tiles and k-chemical phases: kn coupled differential equationsFirst tests with Mathematica: Works for >1000 coupled equations

For n-tiles and k-chemical phases: kn coupled differential equationsFirst tests with Mathematica: Works for >1000 coupled equations

dσX / dt =

Plasma

+Influx (by re-deposition matrix)

– Erosion flux (by hydrogen and impurities)

– Flux of sublimation (from vapor pressure of the chemical phase)

± Balancing flux (with bulk material)

k Chemical phases or elements [X] [Y] [Z] ...

Chemical reactions

+Flux of formation reactions (X is Product)

– Flux of dissociation reactions (X is Reactant)

Concept: Each tile is composed of a thin reaction zone and a bulk materialConcept: Each tile is composed of a thin reaction zone and a bulk material

Page 15: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Prove-Of-Principle (w/o chemical reactions)

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Destination bin

So

urc

e b

in

1.00E-4

6.31E-4

3.98E-3

2.51E-2

1.58E-1

1.00E0

Flux fraction (LOG scale)

BeTotal

Numerical solution for 69 tiles, re-deposition matrix and C wall + Be evaporationNumerical solution for 69 tiles, re-deposition matrix and C wall + Be evaporation

Initial Be coverage Re-deposition of Be

Page 16: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Prove-Of-Principle (w/o chemical reactions)

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Destination bin

So

urc

e b

in

1.00E-4

6.31E-4

3.98E-3

2.51E-2

1.58E-1

1.00E0

Flux fraction (LOG scale)

BeTotal

Numerical solution for 69 tiles, re-deposition matrix and C wall + Be evaporationNumerical solution for 69 tiles, re-deposition matrix and C wall + Be evaporation

Initial Be coverage Re-deposition of BeBe is covered by C

Page 17: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Prove-Of-Principle (w/o chemical reactions)

Numerical solution for 69 tiles, re-deposition matrix and C wall + Be evaporationNumerical solution for 69 tiles, re-deposition matrix and C wall + Be evaporation

[Be

/ Ǻ2 ]

Time [s]

Tiles with Be at surface

Tiles with C at surface

All Be is covered by C

Page 18: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Conceptual approach

DIVIMPDIVIMP

Plasma transport ofimpurities

ERODEPDIF:Flux balances

ERODEPDIF:Flux balances

Background plasma

OEDGE(OSM)

OEDGE(OSM)

SOLPS(B2+Eirene)

SOLPS(B2+Eirene)

CARRE,recent codes

CARRE,recent codes

Grid

• Diffusion• Sublimation• Chemical phase formation

Impurity generation

SDTrimSDTrim

Materials properties

Materials properties

Model of surface chemistry

Page 19: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

ITER first wall

HeHe BeBeWW

CC

OO

HH

NNElementsElements

Page 20: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

ITER first wall

HeHe

Nitrides:WNBe3N2

Nitrides:WNBe3N2

Hydrides:BeH2

CXHY

OH2

Hydrides:BeH2

CXHY

OH2

Carbides:WC, W2CBe2C

Carbides:WC, W2CBe2C

Beryllides:Be2W, Be12W

Beryllides:Be2W, Be12W

Oxides:WO3

BeOCO2

Oxides:WO3

BeOCO2

BeBeWW

CC

OO

HH

NNElementsElements

Binary phasesBinary phases

Page 21: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

ITER first wall

HeHe

Nitrides:WNBe3N2

Nitrides:WNBe3N2

Hydrides:BeH2

CXHY

OH2

Hydrides:BeH2

CXHY

OH2

Carbides:WC, W2CBe2C

Carbides:WC, W2CBe2C

Beryllides:Be2W, Be12W

Beryllides:Be2W, Be12W

Oxides:WO3

BeOCO2

Oxides:WO3

BeOCO2

BeBeWW

CC

OO

HH

NN

Tungstates:BeWO3, BeWO4

Hydroxides:Be(OH)2, W(OH)X

Tungstates:BeWO3, BeWO4

Hydroxides:Be(OH)2, W(OH)X

ElementsElements

Binary phasesBinary phases

Ternary phasesTernary phases

Page 22: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Simplified description of ITERs first wall chemistry

Be W C Be2C W2C WC Be2W Be12WBegas BeO Oads

WO3 WO3,gas

Chemical phases

Chemical phases

2 Be + C → Be2CBe2C → 2 Be + CW + C → WCWC → W + C2 W + C → W2CW2C → 2 W + CW + 2 Be → Be2WBe2W → W + 2 BeW2C → WC + WWC + W → W2CBe + O → BeOBeO → Be + OW + 3 O → WO3

WO3 → W + 3 O

Sublimation:Be → Begas

WO3 → WO3,gas

O-Adsorption:O2,gas → Oads

Oads → O2,gas

Elementary reactions

Elementary reactions

sm

smk

kT

EkCW

4

2 11

121

1 withexp][][

ssmk

kT

EkCW 1

22

221

2 withexp][2

Equations for reaction fluxesEquations for reaction fluxes

...][

212

dt

CWd...22

][21

dt

Wd

Reaction balancesReaction balances

Change of areal density of chemical phase = + all formation reaction fluxes – all dissociation reaction fluxes

Couple to plasma transport code Couple to plasma transport code

Page 23: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Benchmarking example: W/Be/O

XPS

XPS experimental data• 2.1 nm Be on • W (Substrate,pc)• 10-10 mbar O2

Layered system

XPS experimental data• 2.1 nm Be on • W (Substrate,pc)• 10-10 mbar O2

Layered system

Model

Model of coupled reaction equations

Elementary processes:• O adsorption• Be and W oxidation• BeO and WO3 dissociation• Be and WO3 sublimation• Be2W formation and dissociation

Not included: Depth profiles (Homogeneous distributed phases)

Model of coupled reaction equations

Elementary processes:• O adsorption• Be and W oxidation• BeO and WO3 dissociation• Be and WO3 sublimation• Be2W formation and dissociation

Not included: Depth profiles (Homogeneous distributed phases)

Page 24: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

SummarySet up a scalable model for JET (and ITER) that describes the first wall material evolution as a combination of:

+ Dynamic impurity generation (Parametrised TRIDYN)+ Plasma transport via a static background (DIVIMP)+ Some temperature dependent processes (Chemical phase formations, sublimation, directly benchmarked by XPS data)

Method: Numerical solution of a set of coupled algebraic differential equations (Mathematica)

Result: Time evolution of

Surface concentrations (incl. layer growth) Plasma impurity concentrations Erosion and re-erosion fluxes Benchmark the results with JET experiments

(e.g. post-mortem analysis of layers, spectroscopy of erosion fluxes)

Page 25: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.
Page 26: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Erosion and re-erosion by impurities

Assumption: Individual sputteryields Yj of a mixture of elements scales linearily with the surface concentration

Assumption: Individual sputteryields Yj of a mixture of elements scales linearily with the surface concentration

Works well for Be / C but only fairly good for W / C, W / BeWorks well for Be / C but only fairly good for W / C, W / Be

0 200 400 600 800 10000.0

0.2

0.4

0.6

0.8

1.0

Be

su

rfa

ce

co

nc

en

tra

tio

n

Fluence (#/A2)

TRIDYN Analytical model

50 eV D + 100 eV Be on C(Precalculated Yields)

Page 27: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Destination bin

So

urc

e b

in

1.00E-4

6.31E-4

3.98E-3

2.51E-2

1.58E-1

1.00E0

Flux fraction (LOG scale)

BeTotal

Re-deposition matrix (JET SG)

Promtre-deposition

... ... ...

Simple (unverified) OSM plasma background

Page 28: M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana 01.10.2009 Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Re-deposition matrix by DIVIMP

2 3 4

-2

-1

0

1

2

Outer plasma grid cells Projection of the grid to the vessel wall Areas for homogeneous

impurity launch

Z [

m]

R [m]

Lauch flux of Be impurity ionsand map points of re-deposition (Charge resolved)

Re-deposition matrix, n ~ 70

static BGP

Bin

static BGP,standard grid