Top Banner
Lyapunov Modes in Extended Dynamical Systems Günter Radons with Hong-liu Yang, Kazumasa A. Takeuchi, Francesco Ginelli, Hugues Chaté Francesco Ginelli, Hugues Chaté Theoretical Physics I – Complex Systems and Nonlinear Dynamics
22

Lyapunov Modes in Extended Dynamical Systemsecodyc10/Contributions/Radons.pdf · Lyapunov Modes in Extended Dynamical Systems Günter Radons with Hong-liu Yang, Kazumasa A. Takeuchi,

Jul 29, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lyapunov Modes in Extended Dynamical Systemsecodyc10/Contributions/Radons.pdf · Lyapunov Modes in Extended Dynamical Systems Günter Radons with Hong-liu Yang, Kazumasa A. Takeuchi,

Lyapunov Modes in Extended Dynamical Systems

Günter Radonswith Hong-liu Yang, Kazumasa A. Takeuchi,

Francesco Ginelli, Hugues ChatéFrancesco Ginelli, Hugues Chaté

Theoretical Physics I – Complex Systems and Nonlinear Dynamics

Page 2: Lyapunov Modes in Extended Dynamical Systemsecodyc10/Contributions/Radons.pdf · Lyapunov Modes in Extended Dynamical Systems Günter Radons with Hong-liu Yang, Kazumasa A. Takeuchi,

• Generalization of (phonon) normal modes to chaotic systems

• Linearized motion in neighborhood of chaotic trajectory

• Hydrodynamic Lyapunov Modes (HLM):

Lyapunov Modes:

Slow, long wave-length behavior• Objects of Hamiltonian nonlinear dynamics

fundamental to (non-equilibrium) statistical physics?

• This talk: Extended dissipative systems,existence of finite number of physical, entangled modes

Page 3: Lyapunov Modes in Extended Dynamical Systemsecodyc10/Contributions/Radons.pdf · Lyapunov Modes in Extended Dynamical Systems Günter Radons with Hong-liu Yang, Kazumasa A. Takeuchi,

• Orthogonal Lyapunov Vectors (OLV):

Studied in many extended systems (since 2000: Hard spheres, Lennard-Jones fluids, WCA fluids, Coupled map lattices, PDEs (KS

2 Types of Lyapunov Vectors:

WCA fluids, Coupled map lattices, PDEs (KS equation),Dynamic XY model, FPU models, Posch, Morriss, Yang, G.R., …)

• Covariant Lyapunov Vectors (CLV):Numerically accessible since 2007*

*PRL 99,130601 (2007) Ginelli et al.

Page 4: Lyapunov Modes in Extended Dynamical Systemsecodyc10/Contributions/Radons.pdf · Lyapunov Modes in Extended Dynamical Systems Günter Radons with Hong-liu Yang, Kazumasa A. Takeuchi,

reference trajectory

δx

phase space

Dynamics in tangent space: OLV

OLV = Orthogonal Lyapunov vectors δδδδx(αααα)

(t): dynamics of orthonormal frame δδδδx

(αααα)(t), αααα = 1,...,2dN, from repeated Gram-

Schmidt-reorthogonalization or QR decomposition

Property: k-dimensional parallel-epipedes align asy mptotically with the space spanned by the k first Lyapunov vectors a nd its volume growth rate is λλλλ(1111)

+λλλλ(2222)+…+λλλλ(κκκκ)

Lyapunov exponents λλλλ(αααα): : : : possible growth ratesδδδδx(t) ~ exp( λλλλ(αααα)

t) δδδδx(0), ordered λλλλ(1111)>λλλλ(2222)

>λλλλ(3333)…

Page 5: Lyapunov Modes in Extended Dynamical Systemsecodyc10/Contributions/Radons.pdf · Lyapunov Modes in Extended Dynamical Systems Günter Radons with Hong-liu Yang, Kazumasa A. Takeuchi,

reference trajectory: flow x(t) = ΦΦΦΦ(t)[x(0)]

e(αααα)

(x)

phase space

Dynamics in tangent space: CLV

e(αααα)

(ΦΦΦΦ(t)[x])

x ΦΦΦΦ(t)[x]. .

reference trajectory: flow x(t) = ΦΦΦΦ [x(0)]

perturbation: δx(t) = DΦ(t)[x(0)] δx(0)

CLV = Covariant Lyapunov vectors e(αααα)

(x):

DΦΦΦΦ(t)[x] e

(αααα)(x)= Γ(α) (x,t) e

(αααα)(ΦΦΦΦ(t)

[x]), stretching factor Γ(α) (x,t)

Lim t�∞ 1/t log(Γ(α) (x,t)) = λλλλ(αααα)((((x) αααα-th Lyapunov exponent

e(αααα)

(x) span Oseledec subspaces

Page 6: Lyapunov Modes in Extended Dynamical Systemsecodyc10/Contributions/Radons.pdf · Lyapunov Modes in Extended Dynamical Systems Günter Radons with Hong-liu Yang, Kazumasa A. Takeuchi,

Mather decomposition: CLV

CLV = Covariant Lyapunov vectors e(αααα)

(x):

Decomposition of fundamental matrix (Mather spectrum):

DΦΦΦΦ(t)[x] = ΣΣΣΣααααe

(αααα)(ΦΦΦΦ(t)

[x]) Γ(α) (x,t) f(αααα)

(x)T

stretching factor Γ(α) (x,t)

Lim t�∞ 1/t log(Γ(α) (x,t)) = λλλλ(αααα)((((x) αααα-th Lyapunov exponent

e(αααα)

(x) span Oseledec subspaces

f(αααα)

(x) adjoint basis

Biorthogonal sets: f(αααα)

(x)T e(ββββ)

(x) = δδδδαβ αβ αβ αβ and ΣΣΣΣααααe(αααα)

(x) f(αααα)

(x)T = 1

Page 7: Lyapunov Modes in Extended Dynamical Systemsecodyc10/Contributions/Radons.pdf · Lyapunov Modes in Extended Dynamical Systems Günter Radons with Hong-liu Yang, Kazumasa A. Takeuchi,

CLV, inertial manifolds, effective degrees offreedom of dissipative extended systems *:

Central result: Lyapunov modes split into 2 groups: 1. infinitely many modes with included angles

bounded away from zero, associated Lyapunovexponents negative (decaying perturbations, trivial

*H. Yang, K.A. Takeuchi, F. Ginelli, H. Chaté, G.R., PRL 102, 074102 (2009)

exponents negative (decaying perturbations, trivial modes)

2. finite number of modes with repeatedly vanishing included angles, associated Lyapunov exponents positive and negative (non-decaying perturbations, physical modes), “surface” of inertial manifold (IM)

Page 8: Lyapunov Modes in Extended Dynamical Systemsecodyc10/Contributions/Radons.pdf · Lyapunov Modes in Extended Dynamical Systems Günter Radons with Hong-liu Yang, Kazumasa A. Takeuchi,

Kuramoto-Sivashinsky (KS) Equation

dynamics of solution u(x,t)

L = 133.12

Page 9: Lyapunov Modes in Extended Dynamical Systemsecodyc10/Contributions/Radons.pdf · Lyapunov Modes in Extended Dynamical Systems Günter Radons with Hong-liu Yang, Kazumasa A. Takeuchi,

CLVs for KS system:

0 10 20 30 40 50 60Lyapunov index: α

-1.5

-1.0

-0.5

0.0

Λ(α

)

Lyapunov spectrum, L = 133.12

Page 10: Lyapunov Modes in Extended Dynamical Systemsecodyc10/Contributions/Radons.pdf · Lyapunov Modes in Extended Dynamical Systems Günter Radons with Hong-liu Yang, Kazumasa A. Takeuchi,

Static structure factor S((((j))))((((k) of CLVs

wave-like

S(j)(k)

fraction of DOS violation

L = 96

Page 11: Lyapunov Modes in Extended Dynamical Systemsecodyc10/Contributions/Radons.pdf · Lyapunov Modes in Extended Dynamical Systems Günter Radons with Hong-liu Yang, Kazumasa A. Takeuchi,

Distributions of included angles of CLVs

Finite probability of included angles near-zero

no tangencies critical case

Page 12: Lyapunov Modes in Extended Dynamical Systemsecodyc10/Contributions/Radons.pdf · Lyapunov Modes in Extended Dynamical Systems Günter Radons with Hong-liu Yang, Kazumasa A. Takeuchi,

Matrix of minimum included angles of CLVs

cos( θθθθmin(i,j))

physical, entangled modes

0 –

41 –

trivial, decaying modes

i

j

41 –

90 –

Page 13: Lyapunov Modes in Extended Dynamical Systemsecodyc10/Contributions/Radons.pdf · Lyapunov Modes in Extended Dynamical Systems Günter Radons with Hong-liu Yang, Kazumasa A. Takeuchi,

Schematic picture:

� trivial, decaying modes (infinitely many)� physical, entangled modes (e.g. N = 41)

“IM”, physical or entangled manifold, topology unknown

Page 14: Lyapunov Modes in Extended Dynamical Systemsecodyc10/Contributions/Radons.pdf · Lyapunov Modes in Extended Dynamical Systems Günter Radons with Hong-liu Yang, Kazumasa A. Takeuchi,

Extensivity of effective degrees of freedom:

Dependence of Lyapunov spectrum on system length L:

# effective DOF, physical modes

metric entropy (x 50)KY dimension

Page 15: Lyapunov Modes in Extended Dynamical Systemsecodyc10/Contributions/Radons.pdf · Lyapunov Modes in Extended Dynamical Systems Günter Radons with Hong-liu Yang, Kazumasa A. Takeuchi,

Domination of Oseledec Splitting (DOS)

j-th finite time Lyapunov exponent:λλλλττττ

(j)((((x) = 1/ττττ log( ΓΓΓΓ(j) ((((x,ττττ))

DOS: for j < i there exists ττττ0000 s.t. for ττττ > ττττ0000

λλλλττττ(j)((((x(t)) > λλλλττττ

(i)((((x(t)) for all t

i.e. for ττττ > ττττ finite time Lyapunov exponents i.e. for ττττ > ττττ0 0 0 0 finite time Lyapunov exponents always in “correct” order:

λλλλττττ(j)((((t)

λλλλττττ(i)((((t)

t t

DOS: DOS violation:

Page 16: Lyapunov Modes in Extended Dynamical Systemsecodyc10/Contributions/Radons.pdf · Lyapunov Modes in Extended Dynamical Systems Günter Radons with Hong-liu Yang, Kazumasa A. Takeuchi,

Measuring how often DOS is violated (j < i):

λλλλττττ(i)((((t) - λλλλττττ

(j)((((t) < 0 for all t ���� DOS

λλλλττττ(i)((((t) - λλλλττττ

(j)((((t) > 0 for some t ���� DOS violation

fraction of DOS violation: υυυυττττ(j,i )

= < θ(θ(θ(θ(λλλλττττ(i)((((t) - λλλλττττ

(j)((((t))>

<…> = time average, θ(.θ(.θ(.θ(.) = Heaviside step function<…> = time average, θ(.θ(.θ(.θ(.) = Heaviside step function

DOS violation DOS

physical, entangled modes

trivial, decaying modes

Page 17: Lyapunov Modes in Extended Dynamical Systemsecodyc10/Contributions/Radons.pdf · Lyapunov Modes in Extended Dynamical Systems Günter Radons with Hong-liu Yang, Kazumasa A. Takeuchi,

physical, entangled modes

trivial, decaying modes

Page 18: Lyapunov Modes in Extended Dynamical Systemsecodyc10/Contributions/Radons.pdf · Lyapunov Modes in Extended Dynamical Systems Günter Radons with Hong-liu Yang, Kazumasa A. Takeuchi,

How general are these findings?

complex field in 1d space

Complex Ginzburg - Landau (CGL) Equation

Standard model of space-time chaos

Regime of amplitude turbulence

Parameters:

Page 19: Lyapunov Modes in Extended Dynamical Systemsecodyc10/Contributions/Radons.pdf · Lyapunov Modes in Extended Dynamical Systems Günter Radons with Hong-liu Yang, Kazumasa A. Takeuchi,

Lyapunov spectrum:

Page 20: Lyapunov Modes in Extended Dynamical Systemsecodyc10/Contributions/Radons.pdf · Lyapunov Modes in Extended Dynamical Systems Günter Radons with Hong-liu Yang, Kazumasa A. Takeuchi,

physical, entangled modes

trivial, decaying modes

Page 21: Lyapunov Modes in Extended Dynamical Systemsecodyc10/Contributions/Radons.pdf · Lyapunov Modes in Extended Dynamical Systems Günter Radons with Hong-liu Yang, Kazumasa A. Takeuchi,

ττττ-dependence of fraction of DOS violation (CGLE):

j = 78

j = 82

j = 86j = 90j = 94

DOS, trivial, decaying modes

No DOS, physical, entangled

modes

Page 22: Lyapunov Modes in Extended Dynamical Systemsecodyc10/Contributions/Radons.pdf · Lyapunov Modes in Extended Dynamical Systems Günter Radons with Hong-liu Yang, Kazumasa A. Takeuchi,

1. CLVs provide a method to distinguish betweenphysically relevant and irrelevant modes in tangent space of dissipative extended systems

2. relevant modes: • entangled • stable and unstable directions • finite time Lyapunov exponents strongly

fluctuating (DOS violated)fluctuating (DOS violated)• trace inertial manifold ���� finite number of

degrees of freedom• extensive

3. irrelevant modes:• hyperbolically isolated (DOS fulfilled)• purely decaying• infinitely many