Top Banner
Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical and Computer Engineering
25

Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

Dec 21, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing

Matthew Rangen and Keith Bruno

March 3, 2005

Bradley University

Department of Electrical and Computer Engineering

Page 2: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

Overview

• Objective

• Background

• Block Diagram

• Tasks & Schedule

• Current Results• MATLAB• Network Analyzer

• Future Work

Page 3: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

Objective

The objective of the project is to determine the reflection coefficient of an unknown load by the use of a six-port network analyzer integrated with a workstation.

Page 4: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

Background

The reflection coefficient can be found by knowing a reference signal and sampling selected power outputs in a micro-strip circuit. With these known quantities and using a specific algorithm, the reflection coefficient can be calculated.

Page 5: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

Detailed Block Diagram

Page 6: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

Tasks & Schedule(previous)

Final Exams6 to11May

Final Report due, Presentation & Final Exams29 to 5April/May

Final Report & Presentation Preparation22 to 28

Verify Operation15 to 21

·8 to 14

System Integration & Testing1 to 7April

··25 to 31

Test 6-Port·18 to 24

Spring Break11 to 17

 

·Test Programming Code4 to 10March

Fabricate 6-PortIntegrate MATLAB & A/D25 to 3Feb/March

Design & Simulate InterfaceTest Equations18 to 24

·Implement Equations in MATLAB11 to 17 

Design & Simulate 6-Port ·4 to 10February

Purchase: Detectors & USB A/D

Simulate & Test 90º Hybrid  ·28 to 3Jan/Feb

Design 90º HybridDevelop Calibration& Measuring Equations

21 to 27January

Keith BrunoMatthew Rangen

Page 7: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

MATLAB Work

OverallCalibrationFlowchart

Page 8: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

Calibration Work

Calibration FlowEquations

pi, k = Pi , k /P 4, k

TS , R = pi , k / pi , 5

Γk /Γk

2= ck + jsk

γi = (cj − ck)[(si − sj)(ck − cl) − (ci − cj)(sk − sl)] + (ck − cl)[(sl − si)(cj − ck) − (cl − ci)(sj − sk)]

fn = Tn, k *k=1

4

∑ γk

gn = Tn, k *k=1

4

∑ γk *ck

hn = 2 * Tn, k *k=1

4

∑ γ * sk

en =

(Tn, k −1) *k=1

4

∑ γk

Γk

2

Page 9: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

Calibration Work

Calibration Flow Equations Part 2

ξ 1 = (gs * hd) − (hs * gd)

ξ 2 = (hs * fd) − ( fs * hd)

ξ 3 = (hs *ed) − (es * hd)

ξ 4 = (gs * fd) − ( fs * gd)

ξ 5 = (gs *ed) − (es * gd)

Mi , j =(ξ 1

2 /2) −ξ 2ξ 3 −ξ 4ξ 5

ξ 22 + ξ 4

2

Ni , j =ξ 3

2 + ξ 52

ξ 22 + ξ 4

2

A4

2= Mi , j − (Mi , j

2 −Ni , j)(1/ 2)

a4 =A4

2*ξ 2 + ξ 3

ξ 1

b4 =A4

2*ξ 4 + ξ 5

ξ 1

Page 10: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

Calibration Work

Calibration Flow Equations Part 3

Ri , k =Ti , k −1

Γk

2 + Ti , k[ A4

2+ 2 *ck * a4 − 2* sk *b4]

ai =Ri , l(sm − sn) + Ri , m(sn − sl) + Ri , n(sl − sm)

2[cl(sm − sn) + cm(sn − sl) + cn(sl − sm)

bi =Ri , l(cm − cn) + Ri , m(cn − cl) + Ri , n(cl − cm)

2[cl(sm − sn) + cm(sn − sl) + cn(sl − sm)

Ai = ai + jbi

Page 11: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

MATLAB Work

MeasureFlowchart

Page 12: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

Measurement Work

Measurement Equations

Ai = ai + jbi

Fi =(−1)i

2qi[ Aj

2(bk −bl) + Ak

2(bl −bj) + Al

2(bj −bk)]

Gi =(−1)i

2qi[ Aj

2(ak − al) + Ak

2(al − aj) + Al

2(aj − ak)]

Hi =(−1)i

2qi[ Aj

2(akbl − albk) + Ak

2(albj − ajbl) + Al

2(ajbk − akbj)]

Γt =

Fi *Pi , t + ji=1

4

∑ Gi *Pi , t

i=1

4

Hi *Pi , t

i=1

4

Page 13: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

6-Port Network Analyzer

MSUBMSub1

Rough=0.0948 milTanD=0.0013T=1.4 milHu=3.9e+34 milCond=5.8E+7Mur=1Er=3.0H=20.0 mil

MSub

S_ParamSP1

Step=1.0 MHzStop=8.0 GHzStart=4.0 GHz

S-PARAMETERS

V_1ToneSRC1

Freq=6 GHzV=polar(1,0) V

RR1R=50 Ohm

TermTerm4

Z=50 OhmNum=4

TermTerm5

Z=50 OhmNum=5

TermTerm3

Z=50 OhmNum=3

TermTerm6

Z=50 OhmNum=6

MLANGLang1

L=9.04 mmS=5.1 milW=3.8 milSubst="MSub1"

Hybrid90HYB3

PhaseBal=0GainBal=0 dBLoss=0 dB

-900

IN ISO

Hybrid90HYB2

PhaseBal=0GainBal=0 dBLoss=0 dB

-900

IN ISO

Hybrid90HYB4

PhaseBal=0GainBal=0 dBLoss=0 dB

-900

IN ISO

TermTerm2

Z=50 OhmNum=2

TermTerm1

Z=50 OhmNum=1

Hybrid90HYB1

PhaseBal=0GainBal=0 dBLoss=0 dB

-900

IN ISO

Page 14: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

90° Hybrid

Input Port Output Port

Isolated Port Output Port

}90° phase-shift

difference

Page 15: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

90° Hybrid

TermTerm3

Z=50 OhmNum=3

MLINTL16

L=3.2029 cmW=0.127701 cmSubst="MSub1"

MLINTL15

L=3.2029 cmW=0.127701 cmSubst="MSub1"

TermTerm4

Z=50 OhmNum=4

S_ParamSP1

Step=1.0 MHzStop=8.0 GHzStart=4.0 GHz

S-PARAMETERS

MSUBMSub1

Rough=0.0948 milTanD=0.0013T=1.4 milHu=3.9e+34 milCond=5.8E+7Mur=1Er=3.0H=20.0 mil

MSub

MLINTL14

L=3.2029 cmW=0.127701 cmSubst="MSub1"

TermTerm2

Z=50 OhmNum=2

MLINTL1

L=3.2029 cmW=0.127701 cmSubst="MSub1"

TermTerm1

Z=50 OhmNum=1

MLINTL18

L=0.785475 cmW=0.211619 cmSubst="MSub1"

MLINTL2

L=0.785475 cmW=0.211619 cmSubst="MSub1"

MLINTL17

L=0.800725 cmW=0.127701 cmSubst="MSub1"

MLINTL7

L=0.800725 cmW=0.127701 cmSubst="MSub1"

MTEE_ADSTee4

W3=0.211619 cmW2=0.127701 milW1=0.127701 cmSubst="MSub1"

MTEE_ADSTee3

W3=0.127701 cmW2=0.127701 cmW1=0.211619 cmSubst="MSub1"

MTEE_ADSTee2

W3=0.127701 cmW2=0.127701 cmW1=0.211619 cmSubst="MSub1"

MTEE_ADSTee1

W3=0.211619 cmW2=0.127701 cmW1=0.127701 cmSubst="MSub1"

Page 16: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

90° Hybrid Results

4.5 5.0 5.5 6.0 6.5 7.0 7.54.0 8.0

-45

-40

-35

-30

-25

-20

-15

-10

-5

-50

0

freq, GHz

dB(S(1,1))

dB(S(1,2))

dB(S(1,3))

dB(S(1,4))

Page 17: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

90° Hybrid Results

Eqn ph=phase(S(1,4))-phase(S(1,3))

m3freq=m3=-272.650

6.000GHz

m4freq=m4=89.996

6.704GHz

m3freq=m3=-272.650

6.000GHz

m4freq=m4=89.996

6.704GHz

4.5 5.0 5.5 6.0 6.5 7.0 7.54.0 8.0

-250

-200

-150

-100

-50

0

50

100

-300

150

freq, GHz

ph

Readout

m3

Readout

m4

Page 18: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

Lange Coupler

Coupled Port

Through Port

Input Port

Isolated Port

Page 19: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

Lange Coupler

MLANGLang1

L=9.0417 mmS=5.1 milW=3.8 milSubst="MSub1"

MSUBMSub1

Rough=0.0948 milTanD=0.0013T=1.4 milHu=3.9e+34 milCond=5.8E+7Mur=1Er=3.0H=20.0 mil

MSub

TermTerm3

Z=50 OhmNum=3

TermTerm1

Z=50 OhmNum=1

TermTerm4

Z=50 OhmNum=4

S_ParamSP1

Step=1.0 MHzStop=8.0 GHzStart=4.0 GHz

S-PARAMETERS

TermTerm2

Z=50 OhmNum=2

Page 20: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

Lange Coupler Results

m3freq=m3=-11.640

6.000GHz

m2freq=m2=-1.997

6.000GHz

m1freq=m1=-5.827

6.000GHz

m4freq=m4=-15.163

6.000GHz

m3freq=m3=-11.640

6.000GHz

m2freq=m2=-1.997

6.000GHz

m1freq=m1=-5.827

6.000GHz

m4freq=m4=-15.163

6.000GHz

4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.84.0 8.0

-18

-17

-16

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-19

-1

freq, GHz

dB(S(1,1))

Readout

m3dB(S(1,2))

Readout

m2

dB(S(1,3))

Readout

m1

dB(S(1,4))

Readout

m4

Page 21: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

Future Work

• MATLAB Work• Finish MATLAB code and test with arbitrary

values• Determine the procedure of operating the

oscilloscope through remote access• Implement oscilloscope readings into

MATLAB code• Stream-line code

Page 22: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

Future Work

• Six-Port Network Analyzer• Determine power measurements in ADS at the

four output ports• Design loads used for calibration• Simulate six-port network in ADS• Fabricate network analyzer

Page 23: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

Tasks & Schedule(current)

Matthew Rangen Keith Bruno

January 21 to 27 Develop Calibration & Measuring Equations

Design & Simulate 90º Hybrid

Jan/Feb 28 to 3 · · February 4 to 10 · 11 to 17 Implement Equations in MAT LAB

Design & Simulate Lange Coupler

18 to 24 · · Feb/March 25 to 3 · Design & Simulate 6-port March 4 to 10 Test Programming Code · 11 to 17 Spring Break 18 to 24 · Fabricate 6-port Parts 25 to 31 Integrate MATLAB & Oscilloscopes Fabricate 6-port April 1 to 7 Purchase Detectors 8 to 14 Test 6-port 15 to 21 System Integration & Testing 22 to 28 Final Report & Presentation Preparation April/May 29 to 5 Final Report due, Presentation & Final Exams May 6 to11 Final Exams

Page 24: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

Overview

• Objective

• Background

• Block Diagram

• Tasks & Schedule

• Current Results• MATLAB• Network Analyzer

• Future Work

Page 25: Low Cost, Compact Microwave Reflectometer for Non-Destructive Testing Matthew Rangen and Keith Bruno March 3, 2005 Bradley University Department of Electrical.

Questions?

Check us out at:

cegt201.bradley.edu/projects/proj2005/sixpna