Top Banner
11/4/2019 1 Computational Science: Computational Methods in Engineering Numerical Integration Outline Introduction Discrete Integration Trapezoidal Integration Simpson’s Integration Multiple Integrals Convergence 2 1 2
20

Lecture -- Numerical Integration · 2019-11-04 · Solution (1 of 2) 14 A more accurate technique for numerical integration uses the trapezoidal rule. For this, we place the points

Jul 08, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lecture -- Numerical Integration · 2019-11-04 · Solution (1 of 2) 14 A more accurate technique for numerical integration uses the trapezoidal rule. For this, we place the points

11/4/2019

1

Computational Science:

Computational Methods in Engineering

Numerical Integration

Outline

• Introduction•Discrete Integration• Trapezoidal Integration• Simpson’s Integration

•Multiple Integrals

•Convergence

2

1

2

Page 2: Lecture -- Numerical Integration · 2019-11-04 · Solution (1 of 2) 14 A more accurate technique for numerical integration uses the trapezoidal rule. For this, we place the points

11/4/2019

2

Slide 3

Introduction

Why Use Numerical Integration?

4

How is the following integral evaluated?

2

?b

x

a

e dx No analytical solution exists to perform this integration by hand.

The integration must be calculated by other means.

3

4

Page 3: Lecture -- Numerical Integration · 2019-11-04 · Solution (1 of 2) 14 A more accurate technique for numerical integration uses the trapezoidal rule. For this, we place the points

11/4/2019

3

Slide 5

Discrete Integration

…also called a Riemann Sum

Problem Setup

6

Suppose there exists a function 𝑓 𝑥 and it is to be integrated from a to b.

b

a

f x dx

5

6

Page 4: Lecture -- Numerical Integration · 2019-11-04 · Solution (1 of 2) 14 A more accurate technique for numerical integration uses the trapezoidal rule. For this, we place the points

11/4/2019

4

Solution (1 of 2)

7

When this problem is solved on a computer, it is most likely that the function value is only known at discrete points.

Solution (2 of 2)

8

A simple approach to approximate this integral is to represent the area under this function as a series of rectangles.

1 1

b N N

n nn na

b a b af x dx f x x f x x

N N

Observe that the position of the points are at the center of the rectangles.

x

7

8

Page 5: Lecture -- Numerical Integration · 2019-11-04 · Solution (1 of 2) 14 A more accurate technique for numerical integration uses the trapezoidal rule. For this, we place the points

11/4/2019

5

Error

9

Approximating the integral this way produces some error.  Gaps between the true curve and the rectangles leads to error.

Reducing the Errors

10

The only way to reduce error is to use thinner rectangles.  However, this increases the number of computations that have to be performed which increases calculation time and could lead to larger round‐off error.

Or, use a different numerical integration technique altogether!

9

10

Page 6: Lecture -- Numerical Integration · 2019-11-04 · Solution (1 of 2) 14 A more accurate technique for numerical integration uses the trapezoidal rule. For this, we place the points

11/4/2019

6

Terminology

Slide 11

Left‐Hand Riemann Sum

Center Riemann Sum

Right‐Hand Riemann Sum

Slide 12

Trapezoidal Integration

11

12

Page 7: Lecture -- Numerical Integration · 2019-11-04 · Solution (1 of 2) 14 A more accurate technique for numerical integration uses the trapezoidal rule. For this, we place the points

11/4/2019

7

Problem Setup

13

Suppose there exists a function f(x) that is to be integrated from a to b.

b

a

f x dx

Solution (1 of 2)

14

A more accurate technique for numerical integration uses the trapezoidal rule.  For this, we place the points xn differently.  Points are placed at the extreme ends and distributed evenly.

13

14

Page 8: Lecture -- Numerical Integration · 2019-11-04 · Solution (1 of 2) 14 A more accurate technique for numerical integration uses the trapezoidal rule. For this, we place the points

11/4/2019

8

Solution (2 of 2)

15

Instead of fitting rectangles under the curve, use trapezoids.  This conforms more closely to the curve.

Error

16

Approximating the integral this way still produces some error.  There is noticeably less error than with discrete integration. 

The error for trapezoidal integration is 31

12tE x f x b a

15

16

Page 9: Lecture -- Numerical Integration · 2019-11-04 · Solution (1 of 2) 14 A more accurate technique for numerical integration uses the trapezoidal rule. For this, we place the points

11/4/2019

9

Formulation (1 of 2)

Slide 17

The total area of a trapezoid is

tri 2 1 2 1

1 1base height

2 2A x x f f

rect 2 1 1width heightA x x f

rect t

2 1 1 2 1 2 1

1

ri

22 1

1

2

2

A

x x f x x f

A A

f

f fx x

Total Area of Trapezoid

1x 2x

1f x

2f x

Formulation (2 of 2)

Slide 18

In trapezoidal integration, all of the areas of the trapezoids are added together to approximate the integration.

11

1

11

nonuniform spacing2

uniform spacing 2

Nn n

n nbn

Na

n nn

f fx x

f x dxx

f f

17

18

Page 10: Lecture -- Numerical Integration · 2019-11-04 · Solution (1 of 2) 14 A more accurate technique for numerical integration uses the trapezoidal rule. For this, we place the points

11/4/2019

10

Uniform Spacing

Slide 19

When the spacing is uniform, trapezoidal integration reduces to

112

b N

n nna

xf x dx f f

To understand this more deeply, we expand the summation over four trapezoids.

1 1 2 2 3 3 4 4 51

N

n nn

f f f f f f f f f f

We see that each point is included twice, except the two endpoints at x = a and x = b.

1 1 2 3 4 51

2 2 2N

n nn

f f f f f f f

Discrete Vs. Trapezoidal Integration (1 of 2)

20

There are some key differences between discrete and trapezoidal integration:

Discrete Integration Trapezoidal Integration

• Points are distributed differently.• Discrete integration is easier to implement.• Trapezoidal integration has less error.• Trapezoidal more elegantly handles nonuniform spacing.

19

20

Page 11: Lecture -- Numerical Integration · 2019-11-04 · Solution (1 of 2) 14 A more accurate technique for numerical integration uses the trapezoidal rule. For this, we place the points

11/4/2019

11

Discrete Vs. Trapezoidal Integration (2 of 2)

21

Compare the equations for both discrete and trapezoidal integration.  First, trapezoidal integration can be rearranged as follows:

1 1 2 3 4 51

0.5 0.52

b N

n nna

xf x dx f f x f f f f f

The equivalent equation for discrete integration is

1 2 3 41

b N

nna

f x dx x f x f f f f

It can be observed that trapezoidal integration reduces to discrete integration but with one extra rectangle added.

Interpreting Trapezoidal Integration as Discrete Integration

22

Trapezoidal integration can be written as

1 1 2 3 4 51

0.5 0.52

b N

n nna

xf x dx f f x f f f f f

This can be interpreted as a modified discrete integration.

21

22

Page 12: Lecture -- Numerical Integration · 2019-11-04 · Solution (1 of 2) 14 A more accurate technique for numerical integration uses the trapezoidal rule. For this, we place the points

11/4/2019

12

How Can Discrete & Trapezoidal Produce Roughly the Same Error?

23

Negative Error

Positive Error

Positive and negative error tend to cancel within a segment.

Slide 24

Simpson’s Integration

23

24

Page 13: Lecture -- Numerical Integration · 2019-11-04 · Solution (1 of 2) 14 A more accurate technique for numerical integration uses the trapezoidal rule. For this, we place the points

11/4/2019

13

Simpson’s 1/3 Rule

Slide 25

Suppose we have three adjacent points and we fit them to a second‐order polynomial.

3 3

1 1

20 1 2

1 2 3

14

3

x x

x x

f x dx a a x a x dx

x f f f

20 1 2f x a a x a x

Now let’s integrate the polynomial under the curve.

To implement Simpson’s 1/3 rule, we simply apply this to f(x) in groups of 3 points.

Derivation of Simpson’s 1/3 Rule

Slide 26

First, fit the three points to a polynomial.

32 2 30 1 2 0 1 2 0 2

1 1 22

2 3 3

xx

x x

a a x a x dx a x a x a x a x a x

20 1 2f x a a x a x

Substitute in the expressions for a0, a1, and a2.

x 0 x 3 1 3 2 1

0 2 1 2 2

2

2 2

f f f f fa f a a

x x

Second, integrate the polynomial from –x to x.

3 3 2 10 1 2 322 2

322 2 12 2

3 324

3

f f ff

xa x a x x x x f f f

25

26

Page 14: Lecture -- Numerical Integration · 2019-11-04 · Solution (1 of 2) 14 A more accurate technique for numerical integration uses the trapezoidal rule. For this, we place the points

11/4/2019

14

Implementation of Simpson’s 1/3 Rule

Slide 27

Animation of Numerical Integration Using Simpson’s 1/3 Rule

Simpson’s 3/8 Rule

Slide 28

This is similar to Simpson’s 1/3 rule, except it is applied to f(x) in groups of 4 points.

4

1

1 2 3 4

33 3

8

x

x

f x dx x f f f f

27

28

Page 15: Lecture -- Numerical Integration · 2019-11-04 · Solution (1 of 2) 14 A more accurate technique for numerical integration uses the trapezoidal rule. For this, we place the points

11/4/2019

15

Slide 29

Multiple Integrals

Problem Setup

Slide 30

Suppose the function f(x,y) has two independent variables.

How is a double integral evaluated?

, ?y dx b

x a y c

f x y dxdy

Think of this as an “integral of integrals.”

, ?y dx b

x a y c

f x y dy dx

Evaluate the inside integral for each step of in the integration of the outside integral.

29

30

Page 16: Lecture -- Numerical Integration · 2019-11-04 · Solution (1 of 2) 14 A more accurate technique for numerical integration uses the trapezoidal rule. For this, we place the points

11/4/2019

16

Illustration of Numerical Double Integration

Slide 31

The final answer is the numerical double integral of the original 2D array.

Start with a 2D array.

Numerically integrate each of the columns to get a 1D array.

Numerically integrate the 1D array.

Via Discrete Integration

Slide 32

This is very easy using discrete integration.  The discrete equation is

0 0

, ,y dx b M N

m nx a y c

f x y dxdy f a m x c n y x y

b ax

Md c

yN

The MATLAB code to do this is simply dx = (b - a)/M;dy = (d - c)/N;I = sum(f(:))*dx*dy;

31

32

Page 17: Lecture -- Numerical Integration · 2019-11-04 · Solution (1 of 2) 14 A more accurate technique for numerical integration uses the trapezoidal rule. For this, we place the points

11/4/2019

17

Slide 33

Convergence

What is Convergence?

Slide 34

Convergence is the tendency of a numerical algorithm to approach a specific value as the resolution of the algorithm is increased.

This does NOT imply the answer gets more correct.

There may still be something wrong with your calculation!

33

34

Page 18: Lecture -- Numerical Integration · 2019-11-04 · Solution (1 of 2) 14 A more accurate technique for numerical integration uses the trapezoidal rule. For this, we place the points

11/4/2019

18

Demonstration of Convergence

Slide 35

Suppose the following integral is to be evaluted:

0

sin ?xdx

How many segments are necessary?

There is no way to tell.  A convergence study must be performed!

Analytical Answer

Slide 36

To check the final answer, it is possible here to solve the integral analytically…

00

sin cos

cos cos 0

2

xdx x

35

36

Page 19: Lecture -- Numerical Integration · 2019-11-04 · Solution (1 of 2) 14 A more accurate technique for numerical integration uses the trapezoidal rule. For this, we place the points

11/4/2019

19

Convergence Study

Slide 37

Convergence Study

Slide 38

Perhaps convergence happens here if only a rough estimate is needed.

Perhaps convergence happens here if higher precision is needed.

It is up to you to decide when a numerical algorithm is sufficiently converged.

37

38

Page 20: Lecture -- Numerical Integration · 2019-11-04 · Solution (1 of 2) 14 A more accurate technique for numerical integration uses the trapezoidal rule. For this, we place the points

11/4/2019

20

Convergence Does NOT Imply Correctness

Slide 39

Less Correct

More Correct?

Sometimes people get lazy and say that algorithms get more accurate with higher resolution.

THIS IS NOT CORRECT!!!

Algorithms can only become better converged.

Rule‐of‐Thumb for Resolution

Slide 40

For calculations involving waves, the resolution begins to converge when you resolve one wave cycle with about 10 divisions.

wavelength 10

39

40