Top Banner
Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 1 Lecture 4 - Transverse Optics II ACCELERATOR PHYSICS MT 2010 E. J. N. Wilson
27

Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

May 31, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 1

Lecture 4 - Transverse Optics II

ACCELERATOR PHYSICS

MT 2010

E. J. N. Wilson

Page 2: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 2

Contents of previous lecture -Transverse Optics I

Transverse coordinatesVertical FocusingCosmotronWeak focusing in a synchrotron The “n-value”Gutter Transverse ellipseCosmotron peopleAlternating gradients Equation of motion in transverse co-

ordinates

Page 3: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 3

Lecture 4 - Transverse Optics II Contents

Equation of motion in transverse co-ordinates

Check Solution of Hill Twiss Matrix Solving for a ring The lattice Beam sections Physical meaning of Q and beta Smooth approximation

Page 4: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 4

Relativistic H of a charged particle in an electromagnetic field

Remember from special relativity:

i.e. the energy of a free particle

Add in the electromagnetic field» electrostatic energy» magnetic vector potential has same dimensions

as momentum

px =mvx

1− β2 , x

py =mvy

1− β 2 , y

pz =mvz

1− β 2 , z

H = px2c2 + py

2c2 + pz2c2 + m0

2c4

eφeA

H q,p,t( ) = eφ + c p − eA( )2 + m02c4[ ]

12

Page 5: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 5

Hamiltonian for a particle in an accelerator

Note this is not independent of q because

Montague (pp 39 – 48) does a lot of rigorous, clever but confusing things but in the end he just turns H inside out

is the new Hamiltonian with s as the independent variable instead of t (see M 48)

Wilson obtains

» assumes curvature is small» assumes» assumes magnet has no ends» assumes small angles» ignores y plane

Dividing by

Finally (W Equ 8)

A = A x, y, s( )

ps

φ = 0 Ax = Ay = 0px << ps

H =

px2

2− eAs

P = px2 + py

2 + pz2

H =

p2

2−

eP

As =′ x ( )2

2−

As

Bρ( )

H q,p,t( ) = eφ + c p − eA( )2 + m02c4[ ]

12

Page 6: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 6

Multipoles in the Hamiltonian

We said contains x (and y) dependance

We find out how by comparing the two expressions:

We find a series of multipoles:

For a quadrupole n=2 and:

H =

′ x ( )2

2−

As

Bρ( )As

As = Ann∑ xn

H =

′ x ( )2

2+

k(s)x2

2

By ( y= 0)= −

∂As

∂x= − nAnn∑ xn−1

By ( y= 0)=

1(n −1)!

∂ (n −1)By

∂x(n−1) xn −1

H =

′ x ( )2

2+

1Bρ( )n

∑ 1n!

∂ (n −1)By

∂x(n −1) xn

Page 7: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 7

Hill’s equation in one ( or two) lines

Hamilton’s equations give an equation of motion (remember independent coordinate is now s not t )

and:

′ ′ x + kx = 0

Ý p x = −

∂H∂x

⇒ d( ′ x )

ds= −

∂H∂x

∴ ′ ′ x = −

∂H∂x

= −kx

H =

′ x ( )2

2+

k(s)x2

2

Page 8: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 8

Other interesting forms

H =

p2

2+

k s( ) x2

2

H =

px2

2+

1Be( )n=0

∑ 1n!

∂ n −1( )Bz∂x n −1( )

xn

eAsp

=1Be

1n!

∂ n −1( )Bz∂x n −1( )

x n∑

H ≈ −

eAsp

+p x

2

2

H ≈ −

eAsp

− 1− p x2( )1/ 2

In x plane

Small divergences:

Substitute a Taylor series:

Multipoles each have a term:

Bz z = 0( ) =

∂As∂x

= n An x n−1( )

Quadrupoles:

But:

Page 9: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 9

Equation of motion in transverse co-ordinates

Hill’s equation (linear-periodic coefficients)

– where at quadrupoles

– like restoring constant in harmonic motion Solution (e.g. Horizontal plane)

Condition

Property of machine Property of the particle (beam) ε Physical meaning (H or V planes)

EnvelopeMaximum excursions

k = − 1

Bρ( )dBzdx

β s( ) ϕ = ds

β s( )∫

y = εβ s( ) ′ ˆ y = ε / β s( )

ε β s( )

y = β s( ) ε sin φ s( ) + φ0[ ]

d 2 yds 2 + k s( )y = 0

Page 10: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 10

Check Solution of Hill

Differentiatesubstituting

Necessary condition for solution to be true

so

Differentiate again

add both sides

w = β , φ = φ(s) + φo

′ y = ε1

2 ′ w (s) cosφ −dφds

w(s)sin φ

dφds

=1

β (s)=

1w2(s)

′ y = ε1

2 ′ w (s) cosφ −1

w (s)sin φ

′ ′ y = ε1

2 ′ ′ w (s)cosφ −′ w (s)

w2(s)sin φ +

′ w (s)w2(s)

sin φ

−1

w3(s)cosφ

+ky +kw(s)cosφ

cancels to 0

must be zero 0

y = β(s)ε cos φ(s) + φo( )

Page 11: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 11

Continue checking

The condition that these three coefficientssum to zero is a differential equation for the envelope

′ ′ y = ε1

2 ′ ′ w (s)cosφ −′ w (s)

w2(s)sin φ +

′ w (s)w2(s)

sin φ

−1

w3(s)cosφ

+ky +kw(s)cosφ

cancels to 0

must be zero 0

′ ′ w (s) + kw(s) −1

w3(s)= 0

12

β ′ ′ β −14

′ β 2 + kβ 2 = 1

alternatively

Page 12: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 12

All such linear motion from points 1 to 2 can be described by a matrix like:

To find elements first use notationWe knowDifferentiate and remember

Trace two rays one starts “cosine” The other starts with “sine”We just plug in the “c” and “s” expression

for displacement an divergence at point 1 and the general solutions at point 2 on LHS

Matrix then yields four simultaneous equations with unknowns : a b c d which can be solved

y'= ε1/2w' cos ϕ + φ0( ) −

εw

1/2sin ϕ + φ0( )

Twiss Matrix

y s2( )y' s2( )

=

a bc d

y s1( )y' s1( )

= M12

y s1( )y' s1( )

.

w = β

y = ε1/2w cos ϕ + φ0( )

ϕ =

=1

w2

φ = 0φ = π / 2

Page 13: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 13

Twiss Matrix (continued)

Writing The matrix elements are

Above is the general case but to simplify we consider points which are separated by only one PERIOD and for which

The “period” matrix is then

If you have difficulty with the concept of a period just think of a single turn.

φ = φ2 − φ1

M12 =

w2w1

cos ϕ − w2w1' sin ϕ , w1w2 sin ϕ

−1 + w1w1

' w2w2'

w1w2 sin ϕ −

w1'

w2−

w2'

w1

cos ϕ , w1

w2 cos ϕ + w1w2

' sin ϕ

w1 = w2 = w , ′ w 1 = ′ w 2 = ′ w , µ = φ2 − φ1 = 2πQ

M = cos µ − ww ' sin µ , w2 sin µ

−1 + w2w '2

w2 sin µ , cos µ + ww' sin µ

Page 14: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 14

Twiss concluded

Can be simplified if we define the “Twiss” parameters:

Giving the matrix for a ring (or period)

M = cos µ − ww ' sin µ , w2 sin µ

−1 + w2w '2

w2 sin µ , cos µ + ww' sin µ

β = w2 , α = −12

′ β , γ = 1+ α 2

β

M = cos µ + α sin µ , β sin µ

−γ sin µ, cos µ − α sin µ

Page 15: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 15

The lattice

Page 16: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 16

Beam sections

after,pct

Page 17: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 17

Physical meaning of Q and βετα

Page 18: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 18

Smooth approximation

dsβ∫ = dφ∫

2πRβ

= 2πQ

∴β = RQ

γ tr ≈ Q1

γ tr2 =

D R

∴ D = RQ2

Nµ = 2πQ

Page 19: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 19

Principal trajectories

( ) ( ) ( )0

00)(ppsDysSysCsy ∆

+′+=

( ) ( ) ( )0

00)(ppsDysSysCsy ∆′+′′+′=′

=

′′ 10

01

00

00

SCSC

=

′ 0

0DD

+

=

′′

′ D

Dpp

yy

SCSC

yy

s

0

0100

′=

′′′

ppyy

DSCDSC

ppyy

s ∆∆

Page 20: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 20

Effect of a drift length and a quadrupole

θ =

1f

⋅ x

x2x2

'

=

1 , 0−1 f , 1

x1x1

'

Quadrupole

Drift length

x2

x2'

=

1 , 0−kl , 1

x1

x1'

=

′ 1

1

2

2

101

xx

xx

Page 21: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 21

Focusing in a sector magnet

Mx = cos θ , ρ sin θ

−1ρ

sin θ, cos θ

Page 22: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 22

The lattice (1% of SPS)

Page 23: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 23

Calculating the Twiss parameters

M =

cos µ + α sin µ , β sin µ− γ sin µ, cos µ − α sin µ

=

a bc d

THEORY COMPUTATION(multiply elements)

Real hard numbers

Solve to get Twiss parameters:

µ = cos−1 Tr M2

= cos−1 a + d

2

β = b / sin µ

α =a − d

2sin µγ = −c / sin µ

Page 24: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 24

Meaning of Twiss parameters

ε is either :» Emittance of a beam anywhere in the ring» Courant and Snyder invariant fro one particle

anywhere in the ring

ε=′β+′α+γ 22 )()(2)( ysyysys

Page 25: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 25

Example of Beam Size Calculation

Emittance at 10 GeV/cε = 20π mm.mrad = 20π ×10−6 m.radˆ β = 108 m

= 46 10−6

= 46.10−3 m= 46 mm.

εβ = 108.20.10−6

= 0.43 10−6

= 0.43.10−3 rad= 0.43 mrad.

εβ = 20.10−6

108

x

′ x

Page 26: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 26

Page 27: Lecture 4 - Transverse Optics II · Lecture 4 - E. Wilson - 22 Oct 2010 –-Slide2 Contents of previous lecture - Transverse Optics I Transverse coordinates Vertical Focusing Cosmotron

Lecture 4 - E. Wilson - 22 Oct 2010 –- Slide 27

Summary

Equation of motion in transverse co-ordinates

Check Solution of Hill Twiss Matrix Solving for a ring The lattice Beam sections Physical meaning of Q and beta Smooth approximation