Top Banner
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004
40

Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

Aug 10, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

Introduction toCMOS VLSI

Design

Lecture 3: CMOS Transistor Theory

David Harris

Harvey Mudd CollegeSpring 2004

Page 2: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 2

Outline Introduction MOS Capacitor nMOS I-V Characteristics pMOS I-V Characteristics Gate and Diffusion Capacitance Pass Transistors RC Delay Models

Page 3: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 3

Introduction So far, we have treated transistors as ideal switches An ON transistor passes a finite amount of current

– Depends on terminal voltages– Derive current-voltage (I-V) relationships

Transistor gate, source, drain all have capacitance– I = C (V/t) -> t = (C/I) V– Capacitance and current determine speed

Also explore what a “degraded level” really means

Page 4: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 4

MOS Capacitor Gate and body form MOS capacitor Operating modes

– Accumulation– Depletion– Inversion

polysilicon gate

(a)

silicon dioxide insulator

p-type body+-

Vg < 0

(b)

+-

0 < Vg < Vt

depletion region

(c)

+-

Vg > Vt

depletion regioninversion region

Page 5: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 5

Terminal Voltages Mode of operation depends on Vg, Vd, Vs

– Vgs = Vg – Vs

– Vgd = Vg – Vd

– Vds = Vd – Vs = Vgs - Vgd

Source and drain are symmetric diffusion terminals– By convention, source is terminal at lower voltage– Hence Vds 0

nMOS body is grounded. First assume source is 0 too. Three regions of operation

– Cutoff– Linear– Saturation

Vg

Vs Vd

VgdVgs

Vds+-

+

-

+

-

Page 6: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 6

nMOS Cutoff No channel Ids = 0

+-

Vgs = 0

n+ n+

+-

Vgd

p-type body

b

g

s d

Page 7: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 7

nMOS Linear Channel forms Current flows from d to s

– e- from s to d Ids increases with Vds

Similar to linear resistor

+-

Vgs > Vt

n+ n+

+-

Vgd = Vgs

+-

Vgs > Vt

n+ n+

+-

Vgs > Vgd > Vt

Vds = 0

0 < Vds < Vgs-Vt

p-type body

p-type body

b

g

s d

b

g

s d Ids

Page 8: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 8

nMOS Saturation Channel pinches off Ids independent of Vds

We say current saturates Similar to current source

+-

Vgs > Vt

n+ n+

+-

Vgd < Vt

Vds > Vgs-Vt

p-type bodyb

g

s d Ids

Page 9: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 9

I-V Characteristics In Linear region, Ids depends on

– How much charge is in the channel?– How fast is the charge moving?

Page 10: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 10

Channel Charge MOS structure looks like parallel plate capacitor

while operating in inversion– Gate – oxide – channel

Qchannel =

n+ n+

p-type body

+

Vgd

gate

+ +source

-

Vgs

-drain

Vds

channel-

Vg

Vs Vd

Cg

n+ n+

p-type body

W

L

tox

SiO2 gate oxide(good insulator, ox = 3.9)

polysilicongate

Page 11: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 11

Channel Charge MOS structure looks like parallel plate capacitor

while operating in inversion– Gate – oxide – channel

Qchannel = CV C =

n+ n+

p-type body

+

Vgd

gate

+ +source

-

Vgs

-drain

Vds

channel-

Vg

Vs Vd

Cg

n+ n+

p-type body

W

L

tox

SiO2 gate oxide(good insulator, ox = 3.9)

polysilicongate

Page 12: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 12

Channel Charge MOS structure looks like parallel plate capacitor

while operating in inversion– Gate – oxide – channel

Qchannel = CV C = Cg = oxWL/tox = CoxWL V =

n+ n+

p-type body

+

Vgd

gate

+ +source

-

Vgs

-drain

Vds

channel-

Vg

Vs Vd

Cg

n+ n+

p-type body

W

L

tox

SiO2 gate oxide(good insulator, ox = 3.9)

polysilicongate

Cox = ox / tox

Page 13: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 13

Channel Charge MOS structure looks like parallel plate capacitor

while operating in inversion– Gate – oxide – channel

Qchannel = CV C = Cg = oxWL/tox = CoxWL V = Vgc – Vt = (Vgs – Vds/2) – Vt

n+ n+

p-type body

+

Vgd

gate

+ +source

-

Vgs

-drain

Vds

channel-

Vg

Vs Vd

Cg

n+ n+

p-type body

W

L

tox

SiO2 gate oxide(good insulator, ox = 3.9)

polysilicongate

Cox = ox / tox

Page 14: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 14

Carrier velocity Charge is carried by e- Carrier velocity v proportional to lateral E-field

between source and drain v =

Page 15: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 15

Carrier velocity Charge is carried by e- Carrier velocity v proportional to lateral E-field

between source and drain v = E called mobility E =

Page 16: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 16

Carrier velocity Charge is carried by e- Carrier velocity v proportional to lateral E-field

between source and drain v = E called mobility E = Vds/L Time for carrier to cross channel:

– t =

Page 17: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 17

Carrier velocity Charge is carried by e- Carrier velocity v proportional to lateral E-field

between source and drain v = E called mobility E = Vds/L Time for carrier to cross channel:

– t = L / v

Page 18: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 18

nMOS Linear I-V Now we know

– How much charge Qchannel is in the channel– How much time t each carrier takes to cross

dsI

Page 19: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 19

nMOS Linear I-V Now we know

– How much charge Qchannel is in the channel– How much time t each carrier takes to cross

channelds

QIt

Page 20: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 20

nMOS Linear I-V Now we know

– How much charge Qchannel is in the channel– How much time t each carrier takes to cross

channel

ox 2

2

ds

dsgs t ds

dsgs t ds

QIt

W VC V V VL

VV V V

ox = WCL

Page 21: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 21

nMOS Saturation I-V If Vgd < Vt, channel pinches off near drain

– When Vds > Vdsat = Vgs – Vt

Now drain voltage no longer increases current

dsI

Page 22: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 22

nMOS Saturation I-V If Vgd < Vt, channel pinches off near drain

– When Vds > Vdsat = Vgs – Vt

Now drain voltage no longer increases current

2dsat

ds gs t dsatVI V V V

Page 23: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 23

nMOS Saturation I-V If Vgd < Vt, channel pinches off near drain

– When Vds > Vdsat = Vgs – Vt

Now drain voltage no longer increases current

2

2

2

dsatds gs t dsat

gs t

VI V V V

V V

Page 24: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 24

nMOS I-V Summary

2

cutoff

linear

saturatio

0

2

2n

gs t

dsds gs t ds ds dsat

gs t ds dsat

V VVI V V V V V

V V V V

Shockley 1st order transistor models

Page 25: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 25

Example We will be using a 0.6 m process for your project

– From AMI Semiconductor– tox = 100 Å– = 350 cm2/V*s– Vt = 0.7 V

Plot Ids vs. Vds

– Vgs = 0, 1, 2, 3, 4, 5– Use W/L = 4/2

14

28

3.9 8.85 10350 120 /100 10ox

W W WC A VL L L

0 1 2 3 4 50

0.5

1

1.5

2

2.5

Vds

I ds (m

A)

Vgs = 5

Vgs = 4

Vgs = 3

Vgs = 2Vgs = 1

Page 26: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 26

pMOS I-V All dopings and voltages are inverted for pMOS Mobility p is determined by holes

– Typically 2-3x lower than that of electrons n

– 120 cm2/V*s in AMI 0.6 m process Thus pMOS must be wider to provide same current

– In this class, assume n / p = 2

– *** plot I-V here

Page 27: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 27

Capacitance Any two conductors separated by an insulator have

capacitance Gate to channel capacitor is very important

– Creates channel charge necessary for operation Source and drain have capacitance to body

– Across reverse-biased diodes– Called diffusion capacitance because it is

associated with source/drain diffusion

Page 28: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 28

Gate Capacitance Approximate channel as connected to source Cgs = oxWL/tox = CoxWL = CpermicronW Cpermicron is typically about 2 fF/m

n+ n+

p-type body

W

L

tox

SiO2 gate oxide(good insulator, ox = 3.90)

polysilicongate

Page 29: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 29

Diffusion Capacitance Csb, Cdb

Undesirable, called parasitic capacitance Capacitance depends on area and perimeter

– Use small diffusion nodes– Comparable to Cg

for contacted diff– ½ Cg for uncontacted– Varies with process

Page 30: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 30

Pass Transistors We have assumed source is grounded What if source > 0?

– e.g. pass transistor passing VDD

VDDVDD

Page 31: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 31

Pass Transistors We have assumed source is grounded What if source > 0?

– e.g. pass transistor passing VDD

Vg = VDD

– If Vs > VDD-Vt, Vgs < Vt

– Hence transistor would turn itself off nMOS pass transistors pull no higher than VDD-Vtn

– Called a degraded “1”– Approach degraded value slowly (low Ids)

pMOS pass transistors pull no lower than Vtp

VDDVDD

Page 32: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 32

Pass Transistor Ckts

VDDVDD

VSS

VDD

VDD

VDD VDD VDD

VDD

Page 33: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 33

Pass Transistor Ckts

VDDVDD Vs = VDD-Vtn

VSS

Vs = |Vtp|

VDD

VDD-Vtn VDD-VtnVDD-Vtn

VDD

VDD VDD VDD

VDD

VDD-Vtn

VDD-2Vtn

Page 34: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 34

Effective Resistance Shockley models have limited value

– Not accurate enough for modern transistors– Too complicated for much hand analysis

Simplification: treat transistor as resistor– Replace Ids(Vds, Vgs) with effective resistance R

• Ids = Vds/R– R averaged across switching of digital gate

Too inaccurate to predict current at any given time– But good enough to predict RC delay

Page 35: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 35

RC Delay Model Use equivalent circuits for MOS transistors

– Ideal switch + capacitance and ON resistance– Unit nMOS has resistance R, capacitance C– Unit pMOS has resistance 2R, capacitance C

Capacitance proportional to width Resistance inversely proportional to width

kgs

dg

s

d

kCkC

kCR/k

kgs

dg

s

d

kC

kC

kC

2R/k

Page 36: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 36

RC Values Capacitance

– C = Cg = Cs = Cd = 2 fF/m of gate width– Values similar across many processes

Resistance– R 6 K*m in 0.6um process– Improves with shorter channel lengths

Unit transistors– May refer to minimum contacted device (4/2 )– Or maybe 1 m wide device– Doesn’t matter as long as you are consistent

Page 37: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 37

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter

2

1A

Y 2

1

Page 38: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 38

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter

C

CR

2C

2C

R

2

1A

Y

C

2C

Y2

1

Page 39: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 39

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter

C

CR

2C

2C

R

2

1A

Y

C

2C

C

2C

C

2C

RY

2

1

Page 40: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 40

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter

C

CR

2C

2C

R

2

1A

Y

C

2C

C

2C

C

2C

RY

2

1

d = 6RC