Top Banner
Introduction-1 AG 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Dr. Robert M. O’Donnell
51
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lecture 1

Introduction-1AG 6/18/02

MIT Lincoln Laboratory

Introduction to Radar Systems

Dr. Robert M. O’Donnell

Page 2: Lecture 1

MIT Lincoln LaboratoryIntroduction-2

AG 6/18/02

Disclaimer of Endorsement and Liability

• The video courseware and accompanying viewgraphs presented on this server were prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor the Massachusetts Institute of Technology and its Lincoln Laboratory, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, products, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors or the Massachusetts Institute of Technology and its Lincoln Laboratory.

• The views and opinions expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or any of their contractors or subcontractors

Page 3: Lecture 1

Introduction-3AG 6/18/02

MIT Lincoln Laboratory

Introduction to Radar Systems

Introduction

Page 4: Lecture 1

MIT Lincoln LaboratoryIntroduction-4

AG 6/18/02

Acknowledgement

• Developers of Tutorial Material

– Dr. Eric D. Evans– Dr. Andrew D. Gerber– Dr. Robert M. O’Donnell

– Dr. Robert G. Atkins– Dr. Pamela R. Evans– Dr. Robert J. Galejs– Dr. Jeffrey S. Herd– Dr. Claude F. Noiseux– Dr. Philip K. W. Phu– Dr. Nicholas B. Pulsone– Dr. Katherine A. Rink– Dr. James Ward– Dr. Stephen D. Weiner– And many others

Page 5: Lecture 1

MIT Lincoln LaboratoryIntroduction-5

AG 6/18/02

Background on the Course

• One of Many Radar Courses Presented at the Laboratory

• Relatively Short– 10 lectures– 40 to 60 minutes each

• Introductory in Scope– Basic Radar Concepts – Minimal Mathematical Formalism

• Prerequisite – A College Degree– Preferred in Engineering or Science, but not Required

• More Advanced Issues Dealt with in Other Laboratory Radar Courses

Page 6: Lecture 1

MIT Lincoln LaboratoryIntroduction-6

AG 6/18/02

Outline

• Why radar?

• The basics

• Course agenda

Page 7: Lecture 1

MIT Lincoln LaboratoryIntroduction-7

AG 6/18/02

What Means are Available for Lifting the Fog of War ?

The Invasion of Normandy

D-Day + 1

D-Day

Courtesy of National Archives.

Page 8: Lecture 1

MIT Lincoln LaboratoryIntroduction-8

AG 6/18/02

What Means are Available for Lifting the Fog of War ?

Iwo Jima1945

Courtesy of National Archives.Courtesy of National Archives.

Courtesy of US Marine Corp, History Division.

Page 9: Lecture 1

MIT Lincoln LaboratoryIntroduction-9

AG 6/18/02

Military Means of Sensing

• Sonar• Blast detection• Troop movement

detection

• Ground surveillance/ reconnaissance/ID

• Laser targeting• Night vision• Space surveillance• Missile seekers

• Chem/Bio• Radiological

• Surveillance• Tracking• Fire control• Target ID/

discrimination• Ground surveillance/

reconnaissance• Ground mapping• Moving target detection• Air traffic control• Missile seekers

Optical/IR Radar Acoustic Other

App

licat

ions

Attr

ibut

es

• Long range• All-weather• Day/night• 3-space target location• Reasonably robust against

countermeasures

Page 10: Lecture 1

MIT Lincoln LaboratoryIntroduction-10

AG 6/18/02

Early Days of Radar Chain Home Radar, Deployment Began 1936

Chain Home Radar Coveragecirca 1940

(21 Early Warning Radar Sites)

Sept 2006 Photograph of Three Chain Home

Transmit Towers, near Dover

Courtesy of Robert Cromwell.Used with permission.

DoverRadar Site

Page 11: Lecture 1

MIT Lincoln LaboratoryIntroduction-11

AG 6/18/02

Chain Home Radar System

• Frequency– 20-30 MHz

• Wavelength– 10-15 m

• Antenna– Dipole Array on

Transmit – Crossed Dipoles on

Receive• Azimuth Beamwidth

– About 100o

• Peak Power– 350 kW

• Detection Range– ~160 nmi on

German Bomber

Radar ParametersTypical Chain Home Radar Site

Page 12: Lecture 1

MIT Lincoln LaboratoryIntroduction-12

AG 6/18/02

Chain Home Transmit & Receive Antennas

360'

240'215'

95'

45'

0'

λ/2

λ/2

MainAntenna

Gap FillerAntenna

Two Transmitter Towers

One Receiver Tower

Transmit Antenna Receive Antenna

Page 13: Lecture 1

MIT Lincoln LaboratoryIntroduction-13

AG 6/18/02

Radar and “The Battle of Britain”

• The Chain Home Radar – British “Force Multiplier”

during the Battle of Britain”• Timely warning of direction

and size of German aircraft attacks allowed British to

– Focus their limited numbers of interceptor aircraft

– Achieve numerical parity with the attacking German aircraft

• Effect on the War– Germany was unable to

achieve Air Superiority– Invasion of Great Britain

was postponed indefinitely

Chain Home Radar Coveragecirca 1940

(21 Early Warning Radar Sites)

Page 14: Lecture 1

MIT Lincoln LaboratoryIntroduction-14

AG 6/18/02

Surveillance and Fire Control Radars

Courtesy of Raytheon. Used with permission.

Courtesy of Raytheon. Used with permission.

Courtesy of Raytheon. Used with permission.Courtesy of Raytheon.Used with permission.

Courtesy of Raytheon.Used with permission.

Photo courtesy Photo courtesy of ITT of ITT

Corporation.Corporation.Used with Used with

permission.permission.

Courtesy of Global Security.Used with permission.

Courtesy of US Navy.

Page 15: Lecture 1

MIT Lincoln LaboratoryIntroduction-15

AG 6/18/02

Airborne and Air Traffic Control Radars

Courtesy Lincoln Laboratory.

Courtesy of Northrop Grumman.Courtesy of Northrop Grumman.Used with permission.Used with permission.

Courtesy of Boeing Used with permission

Courtesy of US Navy. Courtesy of US Air Force.

Courtesy of US Air Force. Courtesy of US Air Force.

Courtesy of US Air Force.

Page 16: Lecture 1

MIT Lincoln LaboratoryIntroduction-16

AG 6/18/02

Instrumentation Radars

Page 17: Lecture 1

MIT Lincoln LaboratoryIntroduction-17

AG 6/18/02

Outline

• Why radar?

• The basics

• Course agenda

Page 18: Lecture 1

MIT Lincoln LaboratoryIntroduction-18

AG 6/18/02

RADAR RAdio Detection And Ranging

Radar observables:• Target range• Target angles (azimuth & elevation)• Target size (radar cross section)• Target speed (Doppler)• Target features (imaging)

Antenna

TransmittedPulse

TargetCross

Section

Propagation

ReflectedPulse

(“echo”)

Page 19: Lecture 1

MIT Lincoln LaboratoryIntroduction-19

AG 6/18/02

Electromagnetic Waves

Radar Frequencies

Courtesy Berkeley National Laboratory

Page 20: Lecture 1

MIT Lincoln LaboratoryIntroduction-20

AG 6/18/02

Properties of Waves Relationship Between Frequency and Wavelength

Speed of light, cc = 3x108 m/sec

= 300,000,000 m/sec

λ

Frequency (1/s) =Speed of light (m/s)Wavelength λ

(m)

Examples: Frequency Wavelength100 MHz 3 m

1 GHz 30 cm3 GHz 10 cm

10 GHz 3 cm

1, 2, 3, …

Figure by MIT OCW.

Page 21: Lecture 1

MIT Lincoln LaboratoryIntroduction-21

AG 6/18/02

Properties of Waves Phase and Amplitude

Amplitude (volts)

)sin(A θ

)sin(A o90−θ

Phase, θ

90° phase offset

A

Amplitude (volts)

Phase, θ

A

Page 22: Lecture 1

MIT Lincoln LaboratoryIntroduction-22

AG 6/18/02

Properties of Waves Constructive vs. Destructive Addition

Σ

Constructive(in phase)

Destructive(180° out of phase)

Σ

Partially Constructive(somewhat out of phase)

Σ

Σ

Non-coherent signals(noise)

Page 23: Lecture 1

MIT Lincoln LaboratoryIntroduction-23

AG 6/18/02

Polarization

x

yElectric Field

Magnetic Field

Electromagnetic Wave

x

y

zE

Horizontal Polarization

Electric Field

Magnetic Field

Electromagnetic Wave

x

y

z

E

Vertical Polarization

Page 24: Lecture 1

MIT Lincoln LaboratoryIntroduction-24

AG 6/18/02

Radar Frequency Bands

Frequency

Wavelength 1 mm1 km 1 m 1 μm 1 nm

1 MHz 1 GHzIR UV

109 Hz

0 1 2 3 4 5 6 7 8 9 10 11 12

30 20 10 8 6 5 4 39 7

Allocated Frequency (GHz)

Wavelength (cm)

X-BandC-BandS-BandL-BandUHFVHF

Visible

1012 Hz

KuKKa

W

Page 25: Lecture 1

MIT Lincoln LaboratoryIntroduction-25

AG 6/18/02

IEEE Standard Radar Bands (Typical Use)

HF 3 – 30 MHz

VHF 30 MHz–300 MHz

UHF 300 MHz–1 GHz

L-Band 1 GHz–2 GHz

S-Band 2 GHz–4 GHz

C-Band 4 GHz–8 GHz

X-Band 8 GHz–12 GHz

Ku-Band 12 GHz–18 GHz

K-Band 18 GHz–27 GHz

Ka-Band 27 GHz–40 GHz

W-Band 40 GHz – 100+ GHz

SearchRadars

Search &Track Radars

Fire Control &Imaging Radars

MissileSeekers

Page 26: Lecture 1

MIT Lincoln LaboratoryIntroduction-26

AG 6/18/02

Radar Block Diagram

Transmitter

PulseCompression

Recording

Receiver

Tracking &ParameterEstimation

Console /Display

Antenna

PropagationMedium

TargetCross

Section DopplerProcessingA / D

WaveformGenerator

Detection

Signal Processor

Main Computer

Page 27: Lecture 1

MIT Lincoln LaboratoryIntroduction-27

AG 6/18/02

Radar Range Equation

R

Transmitted Pulse

Received Pulse

Received SignalEnergy

TransmitPower

TransmitGain

SpreadFactor

TargetRCS

SpreadFactor

ReceiveAperture

DwellTime

Target Cross Section σ

Antenna Aperture ATransmit Power PT

PT4πAλ2 4πR2

1 σ4πR2

1 A τ

Losses

L1

=

Figure by MIT OCW.

Page 28: Lecture 1

MIT Lincoln LaboratoryIntroduction-28

AG 6/18/02

Signal-to-Noise Ratio

SNR = Received Signal Energy

Noise Energy

Received Signal

Noise

Page 29: Lecture 1

MIT Lincoln LaboratoryIntroduction-29

AG 6/18/02

What the #@!*% is a dB?

Signal-to-noise ratio (dB) = 10 log 10Signal PowerNoise Power

ScientificFactor of: Notation dB

10 101 10100 102 201000 103 30...

1,000,000 106 60

Example:

The relative value of two things, measured on a logarithmic scale, is often expressed in deciBel’s (dB)

0 dB = factor of 1 -10 dB = factor of 1/10-20 dB = factor of 1/100

3 dB = factor of 2-3 dB = factor of 1/2

Page 30: Lecture 1

MIT Lincoln LaboratoryIntroduction-30

AG 6/18/02

Pulsed Radar Terminology and Concepts

Pow

er

Duty cycle =

Average power = Peak power * Duty cycle

Peak

pow

er

Time

Pulse length

Pulse repetition interval(PRI)

Pulse lengthPulse repetition interval

Pulse repetition frequency (PRF) = 1/(PRI)

Continuous wave (CW) radar: Duty cycle = 100% (always on)

TargetReturn

Page 31: Lecture 1

MIT Lincoln LaboratoryIntroduction-31

AG 6/18/02

Pulsed Radar Terminology and Concepts

Pow

er

Duty cycle =

Average power = Peak power * Duty cycle

Peak

pow

er

Time

Pulse length

Pulse repetition interval(PRI)

Pulse lengthPulse repetition interval

Pulse repetition frequency (PRF) = 1/(PRI)

Continuous wave (CW) radar: Duty cycle = 100% (always on)

TargetReturn

1 MW

100 kW

10%

100 μsec

1 msec

1 kHz

1 μW

Page 32: Lecture 1

MIT Lincoln LaboratoryIntroduction-32

AG 6/18/02

Brief Mathematical Digression Scientific Notation and Greek Prefixes

109 1,000,000,000 Giga GHz106 1,000,000 Mega MHz, MW103 1,000 kilo km101 10 - -100 1 - -10-3 0.001 milli msec10-6 0.000,001 micro μsec

ScientificNotation

StandardNotation

GreekPrefix

RadarExamples

MHz = MegahertzMW = Megawatt

Page 33: Lecture 1

MIT Lincoln LaboratoryIntroduction-33

AG 6/18/02

Radar Waveforms

Waves?

or Pulses?

Waves, modulatedby “on-off” action of

pulse envelope

What do radars transmit?

Page 34: Lecture 1

MIT Lincoln LaboratoryIntroduction-34

AG 6/18/02

Radar Waveforms (cont’d.)

Pulse at single frequency

LinearFrequency-Modulated

(LFM)Waveform

Time

Freq

uenc

y

Pulse with changing frequency

Time

Freq

uenc

y

Page 35: Lecture 1

MIT Lincoln LaboratoryIntroduction-35

AG 6/18/02

Radar Range Measurement

Transmitted

Pulse

Reflected

Pulse

Range

Target

• Target range = cτ2

where c = speed of lightτ

= round trip timeCourtesy of Raytheon. Used with permission.

Page 36: Lecture 1

MIT Lincoln LaboratoryIntroduction-36

AG 6/18/02

Antenna Gain

R

Isotropic antenna

G = antenna gain

.

Directional antenna

Page 37: Lecture 1

MIT Lincoln LaboratoryIntroduction-37

AG 6/18/02

Propagation Effects on Radar Performance

• Atmospheric attenuation

• Reflection off of earth’s surface

• Over-the-horizon diffraction

• Atmospheric refraction

Radar beams can be attenuated, reflected and bent by the environment

Radar beams can be attenuated, reflected and bent by the environment

Page 38: Lecture 1

MIT Lincoln LaboratoryIntroduction-38

AG 6/18/02

Radar Cross Section (RCS)

Incident Power Density

(Watts/m2)

ReflectedPower(Watts)

σ

(m2)

x =

RCS

Radar Cross Section (RCS, or s) is the effective cross-sectional area of the target as seen by the radar

measured in m2, or dBm2

Page 39: Lecture 1

MIT Lincoln LaboratoryIntroduction-39

AG 6/18/02

Signal Processing Pulse Compression

MatchedFilter

1 msec c2

x = 150 km

Problem: Pulse can be very long; does not allow accurate range measurement

Solution: Use pulse with changing frequency and signal process using “matched filter”

Uncompressed pulse Compressed pulse

?Figure by MIT OCW.

Page 40: Lecture 1

MIT Lincoln LaboratoryIntroduction-40

AG 6/18/02

Bandwidth

Time

Freq

uenc

y

Time

Freq

uenc

y

NarrowbandWaveform

WidebandWaveform

CompressedPulse

LowRange

ResolutionBandw

idthB

andwidth

HighRange

Resolution

c2BΔR =

CompressedPulse

Range

Range

Page 41: Lecture 1

MIT Lincoln LaboratoryIntroduction-41

AG 6/18/02

Why Bandwidth is Important.

Relative Range (m)

High(X 10)

Medium(X 3)

Low

Pow

er

Very High (X 30)

Bandwidth

Wideband Target Profile

Page 42: Lecture 1

MIT Lincoln LaboratoryIntroduction-42

AG 6/18/02

Detection of Signals in Noise

RMSNoiseLevel

DetectionThreshold

Detected Target

FalseAlarm

MissedTarget

Range

Pow

er

Page 43: Lecture 1

MIT Lincoln LaboratoryIntroduction-43

AG 6/18/02

Coherent Integration

0

Volta

ge

Signal buried in Noise

(SNR < 0 dB)

0

Pow

er

Signal integrated out of Noise

(SNR increases by N)

Pulse 1

+ Pulse 2

+ Pulse 3

+ Pulse N

...

• Signals are same each time; add “coherently” (N2)

• Noise is different each time; doesn’t add coherently (N)

|x|2

Page 44: Lecture 1

MIT Lincoln LaboratoryIntroduction-44

AG 6/18/02

Doppler Effect

Figure by MIT OCW.

Observer A Observer B

Driver Hears

Observer A Hears Observer B Hears

Page 45: Lecture 1

MIT Lincoln LaboratoryIntroduction-45

AG 6/18/02

Doppler Shift Concept

c v

λ λ

= cf

c v

λ f = cλ

c

λ’

f’ = f ±

(2v/λ) Dopplershift

Page 46: Lecture 1

MIT Lincoln LaboratoryIntroduction-46

AG 6/18/02

Why Doppler is Important

Clutter returns are much larger than target returns…

Note: if you’re moving too, you need to take that into account.

…however, targets move, clutter doesn’t.

Surface Radar Airborne Radar

Doppler lets you separate things that are moving from things that aren’tDoppler lets you separate things that are moving from things that aren’t

Page 47: Lecture 1

MIT Lincoln LaboratoryIntroduction-47

AG 6/18/02

Clutter Doppler Spectra

0 50 100 150 200

-20

-10

0

10

20

30

40

50

60

70

Land

Velocity (m/s)

Rel

ativ

e Po

wer

(dB

)

SeaRainChaffBirds

Target

Page 48: Lecture 1

MIT Lincoln LaboratoryIntroduction-48

AG 6/18/02

Radar Block Diagram

Transmitter

PulseCompression

Recording

Receiver

Tracking &ParameterEstimation

Console /Display

Antenna

PropagationMedium

TargetCross

Section DopplerProcessingA / D

WaveformGenerator

Detection

Signal Processor

Main Computer

Page 49: Lecture 1

MIT Lincoln LaboratoryIntroduction-49

AG 6/18/02

Outline

• Why radar?

• The basics

• Course agenda

Page 50: Lecture 1

MIT Lincoln LaboratoryIntroduction-50

AG 6/18/02

Introduction to Radar Systems Tutorial Agenda

• Introduction

• Radar Equation

• Propagation Effects

• Target Radar Cross Section

• Detection of Signals in Noise & Pulse Compression

• Radar Antennas

• Radar Clutter and Chaff

• Signal Processing-MTI and Pulse Doppler

• Tracking and Parameter Estimation

• Transmitters and Receivers

Page 51: Lecture 1

MIT Lincoln LaboratoryIntroduction-51

AG 6/18/02

References

• Skolnik, M., Introduction to Radar Systems, New York, McGraw-Hill, 3rd Edition, 2001

• Nathanson, F. E., Radar Design Principles, New York, McGraw-Hill, 2nd Edition, 1991

• Toomay, J. C., Radar Principles for the Non-Specialist, New York, Van Nostrand Reinhold, 1989

• Buderi R., The Invention That Changed the World, New York, Simon and Schuster, 1996