Top Banner
Learning Low-Level Vision William T. Freeman Egon C. Pasztor Owen T. Carmichael
29

Learning Low-Level Vision William T. Freeman Egon C. Pasztor Owen T. Carmichael

Jan 31, 2016

Download

Documents

leyna

Learning Low-Level Vision William T. Freeman Egon C. Pasztor Owen T. Carmichael. Model image and scene patches as nodes in a Markov network. image patches. scene patches. image. F ( x i , y i ). Y ( x i , x j ). scene. Network joint probability. 1. Õ. Õ. =. Y. F. y. P. (. x. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

Learning Low-Level Vision

William T. Freeman Egon C. Pasztor

Owen T. Carmichael

Page 2: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

Model image and scene patches as nodes in a Markov network

image patches

(xi, yi)

(xi, xj)

image

scene

scene patches

Page 3: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

Network joint probability

scene

image

Scene-scenecompatibility

functionneighboringscene nodes

local observations

Image-scenecompatibility

function

i

iiji

ji yxxxZ

yxP ),(),(1

),(,

Page 4: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

Super-resolution

• Image: low resolution image

• Scene: high resolution image

imag

esc

ene

ultimate goal...

Page 5: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

True high freqsLow-band input

(contrast normalized, PCA fitted)

Full freq. originalRepresentationZoomed low-freq.

(to minimize the complexity of the relationships we have to learn,we remove the lowest frequencies from the input image,

and normalize the local contrast level).

Page 6: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

Training images, ~100,000 image/scene patch pairs

Images from two Corel database categories: “giraffes” and “urban skyline”.

Page 7: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

Training data samples (magnified)

......

Gather ~100,000 patches

low freqs.

high freqs.

Page 8: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

Input low freqs.

Training data samples (magnified)

......

Nearest neighbor estimate

low freqs.

high freqs.

Estimated high freqs.

Page 9: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael
Page 10: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

Image-scene compatibility function, (xi, yi)

Assume Gaussian noise takes you from observed image patch to synthetic sample:

y

x

Page 11: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael
Page 12: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

Scene-scene compatibility function, (xi, xj)

Assume overlapped regions, d, of hi-res. patches differ by Gaussian observation noise:

d

Uniqueness constraint,not smoothness.

Page 13: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

Form linking matrices between nodes

scene samplesat node xj

scene samplesat node xk (xk, xj)

0.16 0.14 0.23 0.40 0.380.72 0.61 0.58 0.13 0.050.60 0.55 0.52 0.11 0.070.48 0.32 0.29 0.03 0.000.09 0.04 0.03 0.01 0.00

Linking matrix:(xk,xj)at samples

Local likelihoods are

all 1 for the scene samples

Page 14: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

Markov network

image patches

(xi, yi)

(xi, xj)

scene patches

Page 15: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

),,,,,(sumsummean 3213211321

yyyxxxPxxxx

MMSE

y1

Derivation of belief propagation

),( 11 yx

),( 21 xx

),( 22 yx

),( 32 xx

),( 33 yx

x1

y2

x2

y3

x3

Page 16: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

The posterior factorizes

y1

),( 11 yx

),( 21 xx

),( 22 yx

),( 32 xx

),( 33 yx

x1

y2

x2

y3

x3),(),(sum

),(),(sum

),(mean

),(),(

),(),(

),(sumsummean

),,,,,(sumsummean

3233

2122

111

3233

2122

111

3213211

3

2

1

321

321

xxyx

xxyx

yxx

xxyx

xxyx

yxx

yyyxxxPx

x

x

xMMSE

xxxMMSE

xxxMMSE

Page 17: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

Propagation rules

y1

),( 11 yx

),( 21 xx

),( 22 yx

),( 32 xx

),( 33 yx

x1

y2

x2

y3

x3

),(),(sum

),(),(sum

),(mean

3233

2122

111

3

2

1

xxyx

xxyx

yxx

x

x

xMMSE

)( ),( ),(sum)( 23222211

21

2

xMyxxxxMx

Page 18: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

Belief, and message updates

jii =

ij( )\

( ) ( , ) ( , ) ( )j

j ki i i j i j j j

x k N j i

M x x x x y M x

j

( )

( ) ( , ) ( )kj j j j j j

k N j

b x x y M x

ˆ argmax ( )j

j j jx

x b x

Page 19: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

Optimal solution in a chain or tree:Belief Propagation

• “Do the right thing” Bayesian algorithm.

• For Gaussian random variables over time: Kalman filter.

• For hidden Markov models: forward/backward algorithm (and MAP variant is Viterbi).

Page 20: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

No factorization with loops!

y1

x1

y2

x2

y3

x3

),(),(sum

),(),(sum

),(mean

3233

2122

111

3

2

1

xxyx

xxyx

yxx

x

x

xMMSE

31 ),( xx

Page 21: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

Justification for running belief propagation in networks with loops

• Experimental results:

– Error-correcting codes

– Vision applications

• Theoretical results:

– For Gaussian processes, means are correct.

– Large neighborhood local maximum for MAP.

– Equivalent to Bethe approx. in statistical

physics.

Weiss and Freeman, 2000

Yedidia, Freeman, and Weiss, 2000

Freeman and Pasztor, 1999;Frey, 2000

Kschischang and Frey, 1998;McEliece et al., 1998

Weiss and Freeman, 1999

Page 22: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

VISTA--Vision by Image-Scene TrAining

image patches

(xi, yi)

(xi, xj)

image

scene

scene patches

Page 23: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

Super-resolution application

image patches

(xi, yi)

(xi, xj)

scene patches

Page 24: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

Iter. 3

Iter. 1

Belief PropagationInput

Iter. 0

After a few iterations of belief propagation, the algorithm selects spatially consistent high resolution

interpretations for each low-resolution patch of the input image.

Page 25: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

Zooming 2 octaves

85 x 51 input

Cubic spline zoom to 340x204 Max. likelihood zoom to 340x204

We apply the super-resolution algorithm recursively, zooming

up 2 powers of 2, or a factor of 4 in each dimension.

Page 26: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

Generic training images

Next, train on a generic set of training images. Using the same camera

as for the test image, but a random collection of

photographs.

Page 27: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

Cubic Spline

Original70x70

Markovnet, training:generic

True280x280

Page 28: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

Training image

Page 29: Learning Low-Level Vision William T. Freeman  Egon C. Pasztor Owen T. Carmichael

Processed image