Top Banner

of 65

[KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

Jul 07, 2018

Download

Documents

Egha Rajunii
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    1/65

    PANCREAS GLAND

    Suyasning HI

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    2/65

    DEFINITIONZAT KIMIA YANG DIHASILKAN DALAM CAIRAN TUBUH OLEH

    SEL ATAU KELOMPOK SEL YANG MENIMBULKAN EFEK

    PENGATURAN FISIOLGIS PADA SEL-SEL TUBUH

    The role

    Is a control system of INTEGRAtiON

    S. SARAF

    ORGAN

    S.ENDROKRIN

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    3/65

    DEFINITION

    • Ligand

    • Receptor 

    • Effector 

    • First  –second messenger 

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    4/65

    DEFINITION

    • Ligand: any small molecules that

    binds specifically to a receptor site

    • Agonist—antagonist

    • Ex.: hormone, drugs, etc.

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    5/65

    DEFINITION

    • Effector : a molecules in the cellmembranes---continue signal from

    hormone or ligand.• Trans membrane molecules/enzyme

    or ion channel

    • Adelynate cyclase . Ca 2+ channel ,phospholipase C

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    6/65

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    7/65

    Second messenger 

    • Be maintained at low concentration in the resting cell

    • Be produced only in response toactivation of specific

    receptors

    • Be produced in proportion to the size of extracellular

    signal

    • Produced a cellular response in proportion to the

    change in concentration of the second messenger

    • Be degraded rapidly to ensure traniency in signalling

    pathways

    • cAMP, cGMP, PI, Ca ion, protein kinase

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    8/65

    Development of the receptor

    concept• Cells posses specific receptors for

    hormones derived from pharmacologic

    studies on the action of toxin and drugs

    • Sutherland and other researchers: second

    messenger of hormone concept; hormone

    is the first messenger 

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    9/65

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    10/65

    JENIS HORMON BERDASARKAN

    LETAK TARGET ORGAN• H. LOKAL (TARGET ORGAN : LOKAL)

     – ASETHYLKHOLIN

     – SEKRETIN,PANKREOZIMIN

     – GASTRIN

    • H. GENERAL (TARGET ORGAN : JAUH)

     – GH

     – THYROID

     – INSULIN/GLUKAGON

     – H STEROID

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    11/65

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    12/65

    Hormones and their receptorsHormone Class of

    hormoneLocation

    Amine(epinephrine)

    Water-soluble Cell surface

    Amine (thyroidhormone)

    Lipid soluble Intracellular  

    Peptide/protein Water soluble Cell surface

    Steroids andVitamin D

    Lipid Soluble Intracellular  

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    13/65

    MEKANISME KERJA HORMON

    • DALAM MENJALANKAN FUNGSINYA HORMON

    BEKERJA DENGAN BEBERAPA CARA :

     – MERUBAH REAKSI KIMIA

     – MERUBAH AKTIVITAS ENZIM

     – MERUBAH PERMIABILITAS MEMBRAN SEL

     – MEMACU SINTESIS PROTEIN

     – KONTRAKSI DAN RELAKSASI OTOT

     – MERANGSANG SEKRESI

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    14/65

    H. Peptide

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    15/65

    Gbr.reseptor

    hormon peptida

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    16/65

    Kerja h. steroid

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    17/65

    MEKANISME KERJA HORMON

    (PROTEIN )HORMON

    ATP

    3’5 cAMP

    •ENZIM

    •PERMIABILITAS

    MEMB. SEL 

    •KONTRAKSI-

    RELAKSASI•SINTESIS PROTEIN

    •SEKRESI

    RESEPTOR 

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    18/65

    MEKANISME KERJA HORMON STEROID

    SINTESIS

    PROTEIN

    (SEL TARGET)

    FS. SEL • H. STEROID

    •HS ~ PRS (SITOPLASMA) HS-PS HS-PS KEDALAM NUKLEUS

    • SEPANJANG PERJALANAN DALAM

    NUKLEUS, PS

    PROTEIN BM

    SINTESIS mRNA SITOPLASMA

    SINTESIS DALAM RIBOSOM

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    19/65

    Learning objectives

    • Glucose homeostasis

    • The synthesis and secretion of

    insulin and glucagon

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    20/65

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    21/65

    ATP

    Glucose CO2 + H2O

    ins

    NEFA

    Glucose Glycerol Triglyceride

    ins ins

    Glycogen

    ins cats

    Glucose G-6-P ins

    CO2

    Glycolysis Pyruvate Lactate

    Glucose

    glcg glcg

    ins cats cats ins

    cort

    Gluconeogenesis Glycogen

    LactateGlycerol Amino Acids

    glcg(+)

    (+) (+)

    (+)(-)

    Liver

    (+) (+)

    (+)

    Skeletal muscle

    Adipose tissue

    Glucose

    Central nervous system

    NIMGU

    NIMGU

    NIMGU

    GLUT-4

    GLUT-4

    ins

    ins (+)

    (+)

    (+)

    GUT

    Carbohydrate

    (+) (+)

    F ig. Overview of carbohydrate metabolism William and Pickup. Handbook of Diabetes, 2000

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    22/65

    Cell types of Islets of Langerhans

    Type of cell Location Function

    Beta

    Alpha

    Central islet

    Outer rim

    Secrete insulin

    Secrete glucagon

    Delta

    Pancreatic

    polypeptide

    Intermixed Secrete

    somatostatinSecrete

    pancreatic

    polypeptide

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    23/65

    Stimulus for

    secretionMajor

    action

    Overall

    effect of

     blood levels

    Insulin(tyrokinase

    receptor)

    Glucagon

    Increased B Gluc

    I amino acids

    I fatty acidGlucagon

    GIP

    GH

    Cortisol

    D B glucose

    I amino acids

    CCK 

    Norepinephrine,

    epinephrine, ACH

    Increases glu

    uptake into cells

    and glucagon

    formation

    D glycogenolysis

    I protein syntesis

    I fat depo and D

    lipolysis

    I uptake K 

    I glycogenolysis and

    gluconeogenesis

    I lipolysis and keto

    production

    Dec glucagon

    D

    D

    D

    Hypokalemia

    I

    I

    I

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    24/65

    Cause increased glucagon Cause decreased glucagonsecretion

    D glucose•I amino acids

    •CCK (alert alpha cells to

     protein meal)

    • Norepinephrine,

    epinephrine

    •Ach

    I blood glucose•Insulin

    •Somatostatin

    •Fatty acids, ketones

    Regulation of glucagon secretion

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    25/65

    Hormonal control of glucose homeostasis 

    Effect Insulin Glucagon Epine-

    phrine

    Growth

    Hormone

    Cortisol

    Glucose uptake  

    Glucose product ion 

    Glycogenolysis   

    Gluconeogenesis  

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    26/65

    Glucose

    glcg glcg

    ins cats cats ins

    cort

    Gluconeogenesis Glycogen

    LactateGlycerol Amino Acids

    glcg

    (+)

    (+) (+)

    (+)(-)

    Glucose

    ~50 g of glucose stored as glycogen

    Glycogen breakdown: glucagon,

    epinephrine, GH, cortisol

    After ~40 hours of fasting – glycogen

    largely depleted and

    gluconeogenesis becomes

    predominant of hepatic glucose

    release

    Carbon precursor: glycerol, lactate,

    amino acidIn health, after overnight fast liver

    release glucose at ~2 mg/kg/min =

    rate glucose uptake

    Hepatic glucose release 

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    27/65

    Glucose transport pathways 

    • Facilitative glucose carriers (GLUTs)

     –  Class I : high-affinity binding proteins GLUT1,

    GLUT3, GLUT4, and lower-affinity

    transporter GLUT2

     –  Class I I : GLUT5, GLUT7, GLUT9, and GLUT11 or

    myoinositol transporter (HMIT1) have a

    very low affinity for glucose and

    preferentially transport fructose

     –  Class I I I : GLUT6, GLUT8, GLUT10, GLUT12

    • Sodium-glucose cotransporters (SGLTs)

    Glucose, hydrophilic nature, can not penetrate lipid

    bilayer; specific

    transporterproteins are required for facilitated diffusion

    into cells

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    28/65

    Glucokinase 

    Glucose G-6-P ATP

    ins

    NEFA

    Glucose Glycerol Triglyceride

    ins ins

    Glycogen

    ins cats

    Glucose G-6-P ins

    CO2

    Glycolysis Pyruvate Lactate

    (+) (+)

    (+)

    Skeletal muscle

    Adipose tissue

    Glu-

    cose

    Beta cell pancreas

    NIMGU

    NIMGU

    NIMGU

    GLUT-4

    GLUT-4

    ins

    ins (+)

    (+)

    (+)

    (+) (+)

    Glucose uptake 

    Insulin-sensitive tissue

    Insulin-independent tissue

    GLUT-2

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    29/65

    STRUCTURE OF MEMBRANE

    RECEPTORS• 4 common motifs:

    Seven transmembrane G protein-

    coupled receptor Receptor-type ion channel

    Single transmembrane receptors thatposses intrinsic enzyme activity

    Transmembrane receptors that interactwith other cellular protein with enzymeactivity

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    30/65

    INSULIN RECEPTOR STRUCTURE

    • Transmembrane glycoprotein complex

    • WM, 400 kDa

    Two 135 kDa a-subunits and two 95 kDa b-subunit

    • Linked by disulphide bonds to form a

    heterotetramer 

    The a-subunits enterily extracelullar • The b-subunit has an extracellular domain, a

    transmembrane domain and an intracellular

    domain

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    31/65

    I nsul in biosynthesis and processing 

    Insulin C peptide

    Prohormone convertase 3 Prohormone convertase 2

    Split (32-33)

    proinsulin

    Split (65-66)

    proinsulin

    Des (31,32)proinsulin Des (64,65)proinsulin

    Carboxypeptidase

    Proinsulin

    The insulin hexamer with

    each of the six molecules

    coloured differently

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    32/65

    INSULIN SECRETION

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    33/65

    Insulin secretion profiles in Type 2

    diabetic patients and healthy people

       I  n

      s  u   l   i  n  s  e  c  r  e   t   i  o  n   (  p  m  o   l   /  m   i  n   )

    800

    6a

    m Time

    10am 2p

    m

    6p

    m

    10pm 2a

    m

    6am

    700

    600

    500

    400

    300

    200

    100

    Healthy

    peopleType 2 diabetic

    patients

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    34/65

    Fig. Insulin signaling pathway that regulate

    glucose metabolism in muscle cells and adipocytes

    (Shepherd and Kahn, 1999 )

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    35/65

    INSULIN ACTIONIN LIVER 

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    36/65

    INSULIN ACTIONIN MUSCLE AND ADIPOCYTE

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    37/65

    INSULIN RECEPTOR FUNCTIONS

    a-subunits• Binds insulin in N-terminal one-third

    • Repress tyr kinase activity intrinsic to b-subunit

    b-subunitsAutophosphorylates six tyr residues

    • Juxtamembrane domain (tyr 960): intracellular substrates

    phosphorylation, internalization

    • Regulatory domain (tyr 1146, 1150, 1151): enhances activity

    of receptor towards exogenous substrates

    • C-terminal region (tyr 1316, 1322): mediates mitogenic

    action of insulin?

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    38/65

    Fig. Structural domain

    of insulin receptor

    Maratos-Flier et al. 1998

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    39/65

    Insulin

    G

    GG G

    (-)

    (+)

    GGG

    GGG

    GGG

    CO2 H2O

    Fasting-state

    Glucose

    Fig. In the fasting state, glucose enters the circulation from the liver and taken up

    predominantly by non-insulin-sensitive tissues (such as the brain). Relatively little glucose is

    taken up by insulin-sensitive tissues such as muscle. The blood glucose is maintained by the

    actions of insulin to restrain hepatic glucose release to match the rate of glucose uptake

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    40/65

    Insulin

    G

    GG G

    (-)

    (+)

    GGG

    GGG

    GGG

    CO2 H2O

    Fed-state

    Glucose

    Fig. Fed state- following meal ingestion, glucose enters the circulation from both the meal

    and the liver. In health, in response to the resulting increment in blood glucose, there is a

    prompt increase in insulin secretion. As a consquence, hepatic glucose release is suppressed

    and glucose uptake b insulin-sensitive tissues such as skeletal muscle is rapidly increased

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    41/65

    INSULIN SIGNALING

    Signaling substrate of insulin receptor: three levels

    1. Level I: proximal substrates (IRS, SHC) directly

    interact with them

    2. Level II: downstream intermediates (MAPKinases, Akt)

    3. Level III: final biological responses

    Level I and II molecules function primarily at plasma

    membrane or in cytosolMany of Level III molecules are transported into

    nucleus

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    42/65

    Fig. Insulin receptor signaling pathway

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    43/65

    GLUCOSE TRANSPORTERS

    Two distinct molecular families of cellular

    transporters of glucose

    1. Sodium-linked glucose transporters, restricted to

    intestine and kidney

    2. Facilitated diffusion down glucose-concentration

    gradient (GLUT 1 7)

    GLUT 4 is the main insulin-responsive glucose transporter

    and is located primarily in muscle cells and

    adipocytes.

    GLUT 4: 90 sequestered intracellularly in absence of

    insulin or other stimuli such as exercise

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    44/65

    Fig. Insulin signaling pathway that regulate

    glucose metabolism in muscle cells and adipocytes

    (Shepherd and Kahn, 1999 )

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    45/65

    Fig. Mechanism involved in the translocation

    of GLUT 4 in muscle cells and adipocyte(Shepherd and Kahn, 1999) 

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    46/65

    KELAINAN SEKRESI INSULIN

    •   KADAR DAN KERJA INSULIN :•  KADAR ABSOLUT : DM TIPE I (IDDM)

    •  KADAR + KEMAMPUAN KERJA : DM TIPE II

    (NIDDM)

    INSULIN RESISTEN

    •   HORMON INSULIN : HIPOGLIKEMI

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    47/65

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    48/65

    Plasma glucose is maintained during exercise by

    • increasing liver glycogen mobilization, using more

    plasma FFA, increasing gluconeogenesis, and

    decreasing glucose uptake by tissues.

    The decrease in plasma insulin and the increase inplasma E, NE, GH, glucagon, and cortisol during

    exercise control

    These mechanisms to maintain the glucose

    concentration.

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    49/65

    CELLULAR MECHANISM OF

    INSULIN RESISTANCE

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    50/65

    RECEPTOR REGULATION

    •Homologous vs. heterologous

    regulation•Down- and up-regulation ~

    number of receptors

    Receptor and postreceptorsignaling

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    51/65

    LIFE CYCLE OF THE HORMONE-

    RECEPTOR COMPLEX

    Biosynthesis and turnover of membrane receptor

    Fig. A general model for the life cycle of the hormone receptor

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    52/65

    Fig. Insulin-

    receptor inter-

    nalization inclathrin-coated

    pits

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    53/65

    INSULIN RESISTNACE PLAYS A MAJOR

    ROLE IN TYPE 2 DM DEVELOPMENT

    1. The presence of insulin resistance 10-20

    years before the onset of the disease

    2. Cross sectional studies demonstrating that

    isnulin resistance is a consistent finding in

    patients with Type 2 DM

    3. Prospective studies demonstrating that

    isnulin resistance is the best predictor of

    whether or not an individual will later

    become diabetic

    Shulman GI, J Clin Invest 106, 2000 

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    54/65

    ROLE OF INSULIN SIGNALING

    SYSTEMS IN INSULIN RESISTANCE

    • Obesity and Type 2 DM

    • Postbinding defect > its receptor

    • Mutations IR gene: rare and no play animportant role in the pathophysiologyof typical Type 2 DM or obesity

    • IR is downregulated in obesity, nodecrease its activity in liver and muscleof Type 2 DM patient -> Type 2 DM:primarily a postreceptor

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    55/65

    1. Glucose metabolism and

    Glycogen synthesis2. Glucose transporters

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    56/65

    Insulin Release

    • In a 24 hour period, 50% of the insulin

    secreted is basal and 50% is stimulated.

    • The main stimulator is glucose.

    • Amino acids also stimulate insulin release,

    especially lysine, arginine and leucine. This

    effect is augmented by glucose.

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    57/65

    Control of Insulin secretion

    • Insulin secretion is also increased by intestinal

    polypeptide hormones

    • GLP-1 (glucagon like peptide) [exendin-4]

    • Glucose-dependent insulinotropic peptide

    (GIP)

    • Cholecystokinin

    •And by pancreatic glucagon.

    • Insulin secretion is decreased by pancreatic

    somatostatin.

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    58/65

    Control of Insulin secretion

    • Insulin secretion is also increased by

    growth hormone (acromegaly)

    • glucocorticoids (Cushings’)

    • prolactin (lactation)

    • placental lactogen (pregnancy)

    • sex steroids

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    59/65

    GLUT 4 and INSULIN RESISTANCE

    GLUT Mmutation

    •Polymorphism in GLUT 4 gene very rare in patients

    with Type 2 DM, and same prevalence with normal

    subjjects

    Tissue specific alterations

    •Obese, IGT, Type 2 DM: reduced GLUT 4 in adipocytes,

    not in skeletal muscle

    Translocation defects

    Trafficing, docking and fusion

    Defects in signaling pathway

    • FFA, glucose toxicity, TNF-a

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    60/65

    Ser/Thr phosphorylation of IRS

    protein and insulin resistance

    Signaling

    IRS Insulin IRS IRS Negative

    P-Tyr P-Ser/Thr feedback control(physiological)

    P-Ser/Thr IRS Insulin

    Elevating agent P-Ser/Thr resistance

    (TNF) (pathological)

    Activators of P-Ser/Thr: PKC, cAMP dependent protein kinase

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    61/65

    TNF-a as an inducer of insulin

    resistance

    • TNF-a expression is increased inabdominal fat and muscle tissue of

    obese individual• Causes IR are direct or indirect?

    • Directly: increase Ser phosphorylationof IRS1 and IRS2

    • Inderectly: stimulated leptin dancorrelated with FFA -> IR

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    62/65

    The role of PPARg in insulin action and

    insulin resistance

    • PPARg

    regulating gene- adipogenesis IR

    •PPARg activation (TZD) -> adipocyte differentiation and

    induced gene expression involved in insulin action (aP2,

    PEPCK, acylCoA synthase, and LPL)

    •PPAR

    g

    activation inhibits leptin gene expression

    •TNFa inhibits PPARg gene expression

    •Fat tissue > liver and muscle - > increase insulin

    sensitivity indirectly via TNFa , leptin, FFA

    •PPARg activation (TZD) -> induced LPL -> increase TG

    uptake to fat -> reduced FFA -> reduced IR

    • Enhanced GLUT4 gene expression

    PPAR=peroxisome proliferator-activated receptor

    TZD=thiazolidinediones

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    63/65

    Summary of insulin secretion• ↑ blood glucose

    • ↓

    • ↑ insulin

    ↓• ↑ transport of glucose into cells,↓ gluconeogenesis, ↓ glycogenolysis

    • ↓

    • ↓ blood glucose

    • ↓

    • ↓ insulin

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    64/65

    THE ROLE OF INSULIN

    Metabolic Effects of Insulin

    • main effect is to promote storage of

    nutrients

    • paracrine effects

    • carbohydrate metabolism

    •lipid metabolism

    • protein metabolism and growth

  • 8/19/2019 [KULIAH 9] Sintesis Dan Sekresi Indokrin PankreasKul

    65/65