Top Banner
Rocket Aerodynamics and Stability By Jan-Erik Rønningen Norwegian Rocket Technology [ [email protected] ] [ www.rocketconsult.no ] Version: 1.40 2008
33

JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Jan 30, 2016

Download

Documents

CherryCheran
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Rocket Aerodynamics and Stability

By Jan-Erik RønningenNorwegian Rocket Technology[ [email protected] ][ www.rocketconsult.no ]

Version: 1.40 2008

Page 2: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Rocket Flight Video

Page 3: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Contents Aerodynamics

Mach Definition Atmosphere (2) Shock Waves (2) Air Flow around Objects (2) CD Values for Various Nose Designs CD vs. Mach Aerodynamic Forces Pressure Distribution Around a Rocket Center of Pressure Determine Center of Pressure Rocket Drag Equation Dynamic Load Induced Drag Drag Reducing Feature QUEST: What Rocket Shape have Highest Drag?

Stability Axis Definition Center-of-Gravity The Weathercock Principle Weather Cocking of a Rocket Fin Stabilization Spin Stabilization (2) Static Margin Active Stability

Page 4: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Earth Atmosphere (1)

Page 5: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Earth Atmosphere (2)

Launching a sounding rocket at different seasons can give up to 5% variation in performance.

Page 6: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Earth Atmosphere (3)

Page 7: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Mach Definition

R = Gas constant unique for the gas) [J / Kg-K] 286 J/kg-K for Air

T = Temperature [K]

= specific heat capacity ratio [-] ( 1.44 for air)

M < 1 : SubsonicM 0.9 - 1.1 : Transonic or sonic (M = 1)M > 1 : SupersonicM > 5 : Hypersonic

][_

TR

vMach etlydhastighLokal

HastighetSpeed

Speed of Sound

Page 8: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Shock Waves (1)

                                                                 

Shadowfax picture of a supersonic bullet

F-18 at supersonic flight

Page 9: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Shock Waves (2)

Page 10: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

What Affects Aerodynamic Drag?

The Object Size Shape

Motion Inclination Speed

Atmosphere Mass Compressibility Viscosity

Page 11: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Air Flow Around Objects

Cylindrical Rod - Lower resistancePlate - Induce large resistance

Symmetrical wing profile (Alpha = 0 °) - Least resistance

Page 12: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Air Flow Around Objects (2)

Almost factor 30 better than the flat plate!

Cd: 0.37

Cd: 0.31

Page 13: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

CD Values for Various Nose Designs

Cd: <0.05 >0.01 0.20 0.20 0.34 0.90 1.00

4:1 3:1 1:1

Cd for different nose design (subsonic velocity) and zero alpha:

Page 14: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

CD vs. Mach

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8

Mach

Cd

Mach

Page 15: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

v

v

Pressure Distribution Around a Rocket

Page 16: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Aerodynamic Forces

n

Surface

Aero dAnpAnpF

V

(h)

C.P

C.G

D

L

Faero

+

G

L = Lift, net force normal to air flowD = Drag, net force parallell to air flow

Pressure variation

n

n

Page 17: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Center of Pressure

dxxp

dxxpxCP

)(

)(

Taken from ref.: http://exploration.grc.nasa.gov/education/rocket/cp.html

Page 18: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Determine Center of Pressure

Taken from ref.: http://exploration.grc.nasa.gov/education/rocket/rktcp.html

Page 19: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Rocket Drag Equation

][2

),(2

Nv

AMCD D

CD : Drag coefficient. Contains all complex dependencies like air compressibility, viscosity body shape and angle-of-attack.

A : Reference area, typically the base diameter of the nose. Different A, affect the value of CD.

: Density of the atmosphere of consideration (typically 1.23kg/m3 for air at sea-level).

v : Rocket speed

Dynamic Pressure

Page 20: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Dynamic Load

][)( 221 PavhQ

Student Rocket:

D=ø70mm0.07m

kgNAQF

mD

A

0.2165.211700385.0550000

00385.04

maxmax

22

D

Page 21: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Induced Drag

Vortex center

Aft vortex

A unsymmetrical fin / wing in an airflow will have excess pressure on the face with least surface (often on the side facing down) and low pressure on the opposite face with largest surface. The pressure difference is the lift.

Po > Pu Positive Lift

Pu

Po

Lift

Drag due to LiftLift dueto Lift

Airflow

Chord

A symmetrical wing/fin willgenerate lift when | > 0° |

Center ofMass

Page 22: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Drag Reducing Feature

7-9°

Mindre undertrykk område Pluft < Pa

Større undertrykk område Pluft < Pa

Rakett med ”boat-tail”

Rakett uten aerodynamisk avslutning

Larger aft surface

Smaller aft surface

Rocket with conical end (”Boat-Tail”)

Rocket with sharp end

Page 23: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

QUEST: What Rocket Shape have Highest Drag?

D

A

dD

B

dD

C

Page 24: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Axis Definition

Page 25: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Center of Gravity

Page 26: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

The Weathercock Principle

No Rotation

Rotation about C.G since C.P offset of the C.G location

No Rotation

C.G

C.G C.P

C.G

Page 27: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Spin Stabilization (1)

D

L

G

v

Spin Frequency: 2000HzL/D : max. 4

D

L v

G

Spin Frequency: 4HzL/D : > 4

Page 28: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Spin Stabilization (2)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 25 50 75 100 125 150 175 200 225 250Time (sec)

Pit

ch a

nd

Rol

l Fre

qu

ency

(H

z)

Pitch

Roll Rate = 3.1 Hz

Roll Rate = 2.5 Hz

Roll Rate = 1.9 Hz

Roll Rate Should Have Positive SlopeWhen Crossing Pitch Frequency

NSR Min Roll Rate at Burnout = 2.5 Hz

Page 29: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Active Stability

Naturally dynamic unstable, but maintained stable due to an automatic attitude system. Trajectory and stability canbe maintained by moving servo controlled fins or by use of side thrusters. A thrust vectoring system (TVC) can also be used. A TVC system is a device that can change the thrust vector by changing the orientation ofthe nozzle or by deflecting the plume.

C.G C.P

F

C.G C.P

a

Fl

Page 30: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Thrust Vector Control System

IRIS-T Air-To-Air Jet Vane TVC System

Page 31: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Static MarginStatic Margin vs. Time

SCA2005 Rocket

5

6

7

8

9

10

11

0 10 20 30 40 50 60 70 80

Time [s]

Sta

tic

Mar

gin

[-] SM = (XCG - XCP) / dref

Page 32: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Stable Rocket Flight?

Page 33: JanRonningen-Rocket_Aerodynamics_and_Stability_V.1.40_2008.ppt

Quest:

C.P

C.G

Aerodynamisk ustabil rakettUnstabel Rocket Configuration B) Finne ant. eller areal økes

C.G

Ny C.P

Alt.2 Increase Fin AreaA) Masse lagt til nesen

Ny C.G

C.P

Ny masse

Alt.1 More mass in front

New Mass