Top Banner
1/71 P i ? > < Fuktig luft Faseovergang under trippelpunktet
71

IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

Sep 26, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

1/71

P �

i ?

>

<

Fuktig luft

Faseovergang under trippelpunktet

Page 2: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

2/71

P �

i ?

>

<

Fuktig luft som blanding at to gasser

• Luft betraktes som en ren komponent

• Vanndamp og luft oppfører seg som en blanding av nær ideelle gasser

Page 3: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

3/71

P �

i ?

>

<

Hele blandingen betraktes som en ideell gass

p =nRT

V=

m(R/M)TV

Page 4: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

4/71

P �

i ?

>

<

Hver komponent betraktes som om den er alene i blandingen

pa =naRT

V=

ma(R/Ma)TV

, P v =nvRT

V=

mv(R/Mv)TV

Page 5: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

5/71

P �

i ?

>

<

Absolutt fuktighet (fuktighetsratio, spesifikk fuktighet)

Det er spesielt for fuktig luft at egenskaper uttrykkes i forhold til den ene av kom-

ponentene (tørr luft) og ikke den totale mengden.

ω =mv

ma

Vi kan uttrykke massen ved partialtrykk og molekylvekter

mv

ma=

MvpvV/RT

MapaV/RT=

Mv

Ma

pv

pa

Mv

Ma= 0.622, pa = p− pv

Dermed kan absolutt fuktighet uttrykkes ved partialtrykkene

ω = 0.622pv

p− pv

Page 6: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

6/71

P �

i ?

>

<

Relativ fuktighet

φ =yv

yv,sat

)T,p

Siden pv = yvp, pg = yv,satp gjelder, er relativ fuktighet forholdet mellom vann-

dampens partialtrykk og vanndampens metningstrykk ved samme temperatur.

φ =pv

pg

)T,p

Page 7: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

7/71

P �

i ?

>

<

Indre energi, entalpi og entropi kan finnes ved a addere bidraget fra hver komponent

i blandingen. For entalpi gjelder f.eks:

H = Ha + Hv = maha + mvhv

Vi deler pa ma og introduserer absolutt fuktighet. Vi far da entalpi av blandingen

per masseenhet tørr luft

H

ma= ha +

mv

mahv = ha + ωhv

Page 8: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

8/71

P �

i ?

>

<

For overhetet damp kan vi bruke entalpien for mettet damp ved gjeldende temperatur:

hv ≈ hg (T )

Det samme gjelder indre energi og entropi, som alle finnes i tabell A-2.

OBS! Tabell A-2 har 273.15 K som referanseverdi for disse tilstandsvariab-

lene, mens tabell A-25, f.eks bruker 0 K som referanseverdi!

Page 9: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

9/71

P �

i ?

>

<

Fuktig luft i kontakt med flytende vann

Til na har vi sett pa fuktig luft alene. Mange systemer bestar av fuktig luft og vann

sammen. Vi innfører da en del forutsetninger basert pa likevekt

• Tørr luft og vanndamp oppfører seg som uavhengige ideelle gasser

• Likevekten mellom flytende fase og vanndamp er ikke forstyrret av at det er luft

til stede.

Det samme gjelder hvis vannet befinner seg som is, dvs. under frysepunktet.

Page 10: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

10/71

P �

i ?

>

<

Duggpunkt

Page 11: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

11/71

P �

i ?

>

<

Eks 12.8: AVKJØLING VED KONSTANT TRYKK

Page 12: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

12/71

P �

i ?

>

<

Et kg fuktig luft kjøles ned ved konstant trykk.

Starttilstand Sluttilstand

P [bar] 1.013 1.013

T [◦C] 21 5

φ 70 % ?

Page 13: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

13/71

P �

i ?

>

<

a) Absolutt fuktighet i starten.

Metningstrykket for vanndamp ved 21 ◦C fra tabell A-2: pg = 0.02487

Fra

φ =pv1

pg

løser vi ut pv1 = φpg = 0.7 · 0.02487 = 0.01741 bar Dermed kan absolutt fuktighet

beregnes med

ω = 0.622pv

p− pv

som innsatt gir

ω = 0.6220.01741

1.01325− 0.01741= 0.011

Page 14: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

14/71

P �

i ?

>

<

b) Duggpunktstemperaturen er metningstemperaturen som korresponderer med par-

tialtrykket pv1 Vi ma interpolere i tabell A-2 for a finne den

Page 15: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

15/71

P �

i ?

>

<

De aktuelle verdiene er

T P

◦C bar

15 0.01705

16 0.01818

Dette gir Td = 15.3 ◦C

Page 16: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

16/71

P �

i ?

>

<

c) Fordi slutt-temperaturen ligger under duggpunkttemperaturen far vi utkondensert

vann. Mengden vann er forskjellen mellom vannmengde i tilstand 1 og 2:

mw = mv1 −mv2

Initiell vannmengde finner vi lett nar vi kjenner absolutt fuktighet, som er definert

som

ω =mv

ma=

mv

m−mv

Page 17: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

17/71

P �

i ?

>

<

Nar vi vet at initiell mengde fuktig luft er m = mv + ma = 1.0 kg løser vi den ut

herfra

ω (m−mv) = mv

Innsatt

ωm = mv + ωmv = mv (1 + ω)

Løser vi dette med hensyn pa mv1 far vi

mv1 = mω

1 + ω= 1.0 · 0.011

1 + 0.011= 0.0109

Page 18: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

18/71

P �

i ?

>

<

Mengde tørr luft:

ma = m−mv1 = 1.0− 0.0109 = 0.9891

Etter avkjølingen vet vi at luften er mettet. Det betyr at vanndamptrykket er met-

ningstrykket ved slutttilstanden Den finnes i tabell A-2 ved T = 5 ◦C: pg2 = 0.00872

bar. Dermed kan vi regne ny absolutt fuktighet

ω2 = 0.6220.00872

1.01325− 0.00872= 0.0054

Gjenværende vann i luften er:

mv2 = maω2 = 0.9891 · 0.0054 = 0.0053

Page 19: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

19/71

P �

i ?

>

<

Dermed er differansen utkondensert:

mw = mv1 −mv2 = 0.0109− 0.0053 = 0.0056

Ser vi pa vann alene har vi ved slutten en tofase ”blanding” væske - damp. Kvaliteten

pa en blanding er definert ved

x =mw

mtot

Innsatt vare tall far vi

x =mw

mv1=

0.00530.0109

= 0.47

Page 20: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

20/71

P �

i ?

>

<

Eks 12.9: AVKJØLING VED KONSTANT VO-

LUM

Page 21: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

21/71

P �

i ?

>

<

Forutsetninger

1. Innholdet i tanken er et lukket system med konstant volum

2. Innholdet er en ideell blanding av to ideelle gasser

3. Nar flytende gass er tilstede er vanndampen mettet og holder systemets tempe-

ratur. Da er væsken ogsa mettet og holder systemets temperatur

Page 22: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

22/71

P �

i ?

>

<

a) Ved starttilstanden er duggpunktstemperaturen metningstemperaturen som kor-

responderer med partialtrykket pv1 Relativ fuktighet og starttemperatur er gitt:

pv1 = φ1pg1 = 0.10 · 1.985 = 0.1985

Interpolasjon gir duggpunktstemperaturen 60 ◦C

Page 23: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

23/71

P �

i ?

>

<

a) Under avkjølingen gjennomgar systemet en konstantvolum-prosess. Vannet vil

eksistere enten som bare damp eller som bade damp og væske. I figur E12.9 krysser

prosesslinjen metningskurven for damp i punktet 1’. Nedenfor dette punktet har vi

kondensering.

Page 24: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

24/71

P �

i ?

>

<

Vi kan finne temperaturen T’ ved a interpolere i tabell A-2 for spesifikt volum for

vanndamp i denne tilstanden, som er lik spesifikt volum i starttilstanden. Vi har da:

vv1 = vv =

(R/Mv

)T1

pv1=

8314 [Nm]18 [kgK]

· 393 [K]

0.1985 · 105[N/m2

] = 9.145[m3/kg

]Vi finner na T ′=56 ◦C ved a interpolere for spesifikt volum vg = vv1 i tabell A-2. T ’

er IKKE duggpunktstemperaturen som vi fant i a)!

Page 25: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

25/71

P �

i ?

>

<

c) Mengden utkonsentrert vann er differansen mellom initiell og endelig vanndam-

pinnhold. I starten har vi:

mv1 =V

vv1=

359.145

= 3.827 kg

Ved slutten kan vi finne vanndampinnholdet ut fra dampkvaliteten.

x2 =vv2 − vf2

vg2 − vf2=

9.145− 0.00102251.447− 0.001022

= 0.178

Dermed kan vi finne vanndampinnholdet i tilstand 2:

mv2 = x2mv1 = 0.178 · 3.827 = 0.681 kg

Massen kondensat er dermed

mw2 = mv1 −mv2 = 3.827− 0.681 = 3.146 kg

Page 26: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

26/71

P �

i ?

>

<

KONSERVERING AV MASSE OG ENERGI

Samme regler gjelder for systemer med fuktig luft som for andre systemer. Eneste

forskjell er noen spesielle begreper.

Massebalansen:

ma1 = ma2

mv1 + mw = mv2

Page 27: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

27/71

P �

i ?

>

<

Det er vanlig a relatere balansen til mengden tørr luft ma. Vi kan uttrykke meng-

den vanndamp ved hjelp av absolutt fuktighet: mv = ωma. Dermed far vi denne

massebalansen for vann:

mw = ma(ω2 − ω1)

Vi ser bort fra arbeid, kinetisk energi og potensiell energi. Da er energibalansen:

Qcv + (maha1 + mvhv1) + mwhw − (maha2 − mv2hv2) = 0

Page 28: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

28/71

P �

i ?

>

<

Entalpien for vanndamp kan vi hente fra vanndamptabellen for mettet damp med

samme temperatur

Qcv + (maha1 + mvhg1) + mwhw − (maha2 − mv2hg2) = 0

Setter mv = ωma, og vi far:

Qcv + ma (ha1 − ω1hg1) + mwhw + ma (ha2 − ω2hg2)

Kombinerer, ordner og far:

Qcv + ma [(ha1‘− ha2) + ω1hg1 + (ω2 − ω1)hw + ω2hg2] = 0

For luftbehandlingsenheter kan vi sette opp energibalansen pa en hensiktsmessig

form:

Page 29: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

29/71

P �

i ?

>

<

Eks 12.10: OPPVARMING AV FUKTIG LUFT I

EN KANAL

Kjent: Temperatur og relativ fuktighet inn, volumstrøm og temperatur ut. Trykket

er konstant, og ingen fuktighet blir tilført.

Bestem: Overført varme og relativ fuktighet pa utløpet.

Page 30: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

30/71

P �

i ?

>

<

a) Overført varme Qcv ut fra masse- og energibalanser. I dette tilfellet er vanndam-

pinnholdet konstant.

ma1 = ma2

mv1 = mv2

Energibalanse blir:

Qcv + (maha1 + mvhv1)− (maha2 − mv2hv2) = 0

som kan løses med hensyn pa overført varme:

Qcv = ma (ha2 − ha1) + mv (hv2 − hv1) = ma [(ha2 − ha1) + ω (hv2 − hv1)]

Vi ma beregne entalpiene pa innløp og utløp

Page 31: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

31/71

P �

i ?

>

<

Massestrømmen beregnes ut fra volumstrømmen pa innløpet

ma =(AV )1

va1

Spesifikt volum for luften beregnes ut fra innløpstilstanden ved ideell gasslov:

va1 =

(R/M

)T1

pa1

Partialtrykket pa1 finnes ut fra egenskapene for relativ fuktighet der vi finner met-

ningstrykket pv1 fra damptabellen A-2

pv1 = φ1pg1 = 0.8 · 0.01228 = 0.0098 bar

Dermed far vi spesifikt volum for luften pa innløpet:

va1 =

(831428.97

NmkgK

)· 283K

0.9902 · 105 N/m2 = 0.82 m3/kg

Page 32: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

32/71

P �

i ?

>

<

Nar spesifikt volun er kjent kan vi regne ut massestrømmen

ma =(AV )1

va1=

150m3/60s0.82m3/kg

= 3.048 kg/s

Absolutt fuktighet finner vi direkte ut fra damptrykket

ω = 0.622pv1

p− pv1= 0.622

0.00981− 0.0098

= 0.00616

Ved a hente ut entalpiene kan i beregne overført varme:

Qcv = ma [(ha2 − ha1) + ω (hv2 − hv1)] =

3.048 [(303.2− 283.1) + 0.00606 (2556.3− 2519.8)] = 62.3kJ/s = 62.3kW

Page 33: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

33/71

P �

i ?

>

<

b) Relativ fuktighet pa utløpet er gitt av partialtrykkene ut fra definisjonen. Parti-

altrykket for vanndamp pa utløpet er lik partialtrykket for vanndamp pa innløpet:

pv2 = pv1 = 0.0098

Metningstrykket for utløpstemperaturen 30 ◦C finner fi fra tabell A-2: pg2 = 0.04246

Vi far da relativ fuktighet direkte:

φ2 =pv2

pg2=

0.00980.04246

= 0.231

Page 34: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

34/71

P �

i ?

>

<

Eks 12.11: AVKJØLING VED KONSTANT VO-

LUM

En lukket tank med volum 35 m3 med fuktig luft ved 1.5 bar, 120 ◦C og φ=0.1.

Blandingen kjøles til 22 ◦C. Beregn overført varme i kJ.

Page 35: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

35/71

P �

i ?

>

<

Energibalanse for et lukket system:

∆U = Q−W

Vi ser bort fra arbeid, W=0. Overført varme blir da:

Q = U2 − U1

der

U1 = maua1 + mv1uv1 = maua1 + mv1ug1

og

U2 = maua2 + mv2uv2 + mw2uw2 = maua2 + mv2ug2 + mw2uf2

Page 36: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

36/71

P �

i ?

>

<

Spesifikk indre energi for vanndamp er tilnærmet lik spesifikk indre energi for mettet

vanndamp ved gjeldende temperatur. Ved utløpet er dette eksakt, fordi tilstanden

ER mettet. De tre siste ligningene gir:

Q = ma (ua2 − ua1) + mv2ug2 + mw2uf2 −mv1ug1

Massen av tørr luft finner vi fra ideell gassligning. Partialtrykket for tørr luft i tilstand

1:

pv1 = φ1pg1 = 0.10 · 1.985 = 0.1985

pa1 = p− pv1 = 1.5− 0.1985 = 1.3015

Massen av tørr luft blir følgende:

ma =pa1V

(R/Ma) T1=

1.3015 · 35831428.97 · 393

= 40.387

Page 37: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

37/71

P �

i ?

>

<

Vi kan na regne ut overført varmemengde, der mv1, mv2 og mw2 er fra løsningen av

Eks 12.9.

Q = ma (ua2 − ua1) + mv2ug2 + mw2uf2 −mv1ug1

= 40.389 (210.49− 281.1) + 0.681 · 2405.7 + 3.146 · 92.32− 3.827 · 2529.3

= −10.603 kJ

Page 38: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

38/71

P �

i ?

>

<

ADIABATISK METNINGSTEMPERATUR

ω =ha(Tas)− ha(T ) + ω′ [hg (Tas)− hf (Tas)]

hg (T )− hf (Tas)

Tas : Adiabatisk metningstemperatur

hf : Entalpi for mettet væske

hg : Entalpi for mettet damp

ω′ = 0.622pg (Tas)

p− pg (Tas)

Vi skal i det følgende vise hvordan vi kommer frem til dette uttrykket

Page 39: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

39/71

P �

i ?

>

<

Adiabatisk metter i stasjonær tilstand

Page 40: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

40/71

P �

i ?

>

<

• Innløp: Fuktig luft med ma, vanndamp med mv

• Fødevann: Vanndamp med m′v − mv

• Utløp: Fuktig luft med ma, vanndamp med m′v

Page 41: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

41/71

P �

i ?

>

<

Entalpibalanse for kontrollvolumet

(maha + mvhv)inn +[(

m′v − mv

)hw

]fødevann

=(maha + m′

vhv

)ut

Forutsetninger:

• Hver av de to luftstrømmene er blandinger av ideell gass

• Ingen varmeutveksling med omgivelsene

• Intet arbeid utført

• Kinetisk og potensiell energi er neglisjert

Page 42: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

42/71

P �

i ?

>

<

Samme ligning med mere eksakt notasjon:

[maha(T ) + mvhv(T )] +[(

m′v − mv

)hw(Tas)

]=

[maha(Tas) + m′

vhv(Tas)]

Page 43: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

43/71

P �

i ?

>

<

Vi deler pa massestrømmen for tørr luft[ha(T ) +

mv

mahv(T )

]+

[(m′

v

ma− mv

ma

)hw(Tas)

]=

[ha(Tas) +

m′v

mahv(Tas)

]Her er:

ω : mvma

ω′ : m′v

ma

(hv)ut : (hg)ut

[ha(T ) + ωhv(T )] +[(

ω′ − ω)hw(Tas)

]=

[ha(Tas) + ω′hv(Tas)

]Denne kan na løses med hensyn pa ω, og vi far ligningen vi begynte med:

ω =ha(Tas)− ha(T ) + ω′ [hg (Tas)− hf (Tas)]

hg (T )− hf (Tas)

Page 44: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

44/71

P �

i ?

>

<

Vatkuletemperaturen

Vatkuletemperaturen kan brukes for a male en tilnærmet adiabatisk metningstem-

peratur. Tilnærmingen er god for blandingen luft/vann ved temperaturer i komfort-

omradet, men gjelder ikke generelt.

Arsaken er at varmebalansen for forholdene i den vate veken ikke oppfyller kravene

til en ekte adiabatisk metter. Geometri, lufthastighet og temperatur pa vannet som

blir tilsatt veken spiller inn.

Page 45: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

45/71

P �

i ?

>

<

HX-diagrammet for fuktig luft

Page 46: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

46/71

P �

i ?

>

<

Entalpi og absolutt fuktighet i skjevt diagram

Page 47: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

47/71

P �

i ?

>

<

Linjer for konstant entalpi og absolutt fuktighet

Page 48: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

48/71

P �

i ?

>

<

Metningskurve φ = 1.0 og linjer for konstant relativ fuktighet φ < 1.0

Page 49: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

49/71

P �

i ?

>

<

Linjer for konstant temperatur. Linjen for t = 0 ◦C er horisontal, de andre er mer og

mer skra. Hvorfor?

h = ha + ωhv ≈ cp(a)t + ω(hfg + cp(v)t) = ωhfg +(cp(a) + ωcp(v)

)t

Diagrammet er konstruert slik at temperaturlinjen er horisontal for t = 0 ◦C

Page 50: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

50/71

P �

i ?

>

<

Fikser og ordner litt

Page 51: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

51/71

P �

i ?

>

<

Eksempel pa prosess: Luft tilføres fuktighet og varme. Du kan lese av de viktigste

tilstandsverdiene i diagrammet for punkt 1 og 2.

Page 52: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

52/71

P �

i ?

>

<

Entalpiendring h2 − h1

Page 53: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

53/71

P �

i ?

>

<

Temperaturendring t2 − t1

Page 54: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

54/71

P �

i ?

>

<

Tilført fuktighet x2 − x1

Page 55: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

55/71

P �

i ?

>

<

Sammenhengen mellom amerikansk og europeisk diagram (Kilde: Tim Padfield):

Page 56: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

56/71

P �

i ?

>

<

AVFUKTNING

Luft avkjøles ved konstant trykk til under duggpunktstemperaturen for deretter a

varmes opp igjen.

Page 57: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

57/71

P �

i ?

>

<

Massebalansen

ma1 = ma2

mv1 + mw = mv2

Mengden kondensat

mw = mv1 − mv2

Kondensat pr masseenhet luft:

mw

ma= ω1 − ω2

Page 58: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

58/71

P �

i ?

>

<

Kjølevæske har massestrøm mr og entalpier hi og he. Entalpibalanse:

mr (hi − he) + (maha1 + mv1hv1)− mwhw − (maha2 + mv2hv2) = 0

Innfører mv1 = ω1ma, mv2 = ω2ma og mw = (ω1 − ω2) ma

mr (hi − he) + (maha1 + ω1mahv1)− (ω1 − ω2) mahw − (maha2 + ω2mahv2) = 0

mr

ma(hi − he) + (ha1 + ω1hv1)− (ω1 − ω2) hw − (ha2 + ω2hv2) = 0

Mengde kjølevæske pr enhet tørr luft blir:

mr

ma=

(ha1 + ω1hv1)− (ω1 − ω2) hw − (ha2 + ω2hv2)(hi − he)

Page 59: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

59/71

P �

i ?

>

<

Evaporativ kjøling

Nar vann og luft føres sammen vil følbar varme i luften ga med til a fordampe vann.

Resultatet er at lufttemperaturen gar ned samtidig som at vanndampinnholdet i

luften øker. Den følbare varmen i luften er gatt over til latent varme i vanndampen.

Jo tørrere luften er, jo større evaporativ kjøling kan vi oppna.

Page 60: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

60/71

P �

i ?

>

<

Entalpibalansen blir som følger. Det understrekede leddet er entalpi tilført gjennom

vannet. Denne er mye mindre enn entalpien tilført gjennom luften i punkt 1. Dermed

er prosessen ikke adiabatisk, bare nesten.

(ha2 + ω2hg2) = (ω2 − ω1) hf + (ha1 + ω1hg1)

Page 61: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

61/71

P �

i ?

>

<

Eks. 12.16

Innløp: 38 ◦C og 10 % relativ fuktighet

Utløp: 21 ◦C

Tilført vann: 21 ◦C

Volumstrøm 140 m3

Page 62: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

62/71

P �

i ?

>

<

Massestrøm for luft nar luftmengden er angitt som volumstrøm:

ma =(AV )1

va1

der va1 lett kan beregnes ut fra tilstandsligningen for fuktig luft

Page 63: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

63/71

P �

i ?

>

<

Absolutt fuktighet i tilstand 2 kan vi løse ut fra entalpibalansen:

(ha2 + ω2hg2) = (ω2 − ω1) hf + (ha1 + ω1hg1)

ω2(hg2 − hf ) = (ha1 + ω1hg1) + ha1 − ha2

som gir

ω2 =(ha1 + ω1hg1) + ha1 − ha2

(hg2 − hf )

Page 64: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

64/71

P �

i ?

>

<

Adiabatisk blanding

Mange prosesser der fuktig luft inngar har kanaler med T-stykker der to luftstrømmer

gar sammen til en.

Page 65: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

65/71

P �

i ?

>

<

Eks. 12.17

Innløp 1: 5 ◦C, absolutt fuktighet 0.002 kg vanndamp/kg tørr luft og Volumstrøm

142 m3

Innløp 2: 24 ◦C, relativ fuktighet 50 %, Volumstrøm 425 m3

Page 66: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

66/71

P �

i ?

>

<

Kjøletarn

Nar ytre forhold gjør det ønskelig a kjøle luft med minimalt vannforbruk er kjøletarn

en mye brukt løsning

Page 67: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

67/71

P �

i ?

>

<

Eks. 12.18

Innløp kondensat: 38 ◦C, massestrøm 4.5x107 kg/h

Makeup vann: 20 ◦C

Innløp luft: 25 ◦C, relativ fuktighet 30 %

Utløp luft: 35 ◦C, relativ fuktighet 90 %

Page 68: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

68/71

P �

i ?

>

<

Massebalanse for luft, bruker felles betengelse ma

ma3 = ma4 = ma

Massebalanse for vann

m1 + m5 + mv3 = m2 + mv4

Vi vet at m1 = m2, Uttrykker massestrømmer for vanndamp ved hjelp av absolutt

fuktighet

m5 = mv4 − mv3 = ma (ω4 − ω3)

Page 69: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

69/71

P �

i ?

>

<

Entalpibalansen:

m1hw1 + (maha3 + mv3hv3) + m5hw5 − m2hw2 − (maha4 + mv4hv4) = 0

Beregner entalpi for vann som entalpi for mettet vann ved samme temperatur. Gjør

det samme for vanndamp.

m1hf1 + (maha3 + mv3hg3) + m5hf5 − m2hf2 − (maha4 + mv4hg4) = 0

Page 70: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

70/71

P �

i ?

>

<

Setter inn følgende:

m1 = m2

m5 = ma (ω4 − ω3)

mv3 = maω3

mv4 = maω4

Page 71: IV - NTNU - Fuktig luft 1/71Indre energi, entalpi og entropi kan finnes ved˚a addere bidraget fra hver komponent i blandingen. For entalpi gjelder f.eks: H = H a + H v = m ah a +

71/71

P �

i ?

>

<

m1hf1+(maha3 + maω3hg3)+ma (ω4 − ω3) hf5−m1hf2−(maha4 + maω4hg4) = 0

Denne kan sa løses med hensyn pa ma:

ma =m1 (hf1 − hf2)

ha4 − ha3 + ω4hg4 − ω3hg3 − (ω4 − ω3) hf5

Ved a ordne litt far vi:

ma =m1 (hf1 − hf2)(

ha4 + ω4hg4

)−

(ha3 + ω3hg3

)− (ω4 − ω3) hf5

De understrekede entalpiene for inngaende og utgaende luft kan vi finne i et diagram

for fuktig luft.