Top Banner
Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School
29

Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

Jan 13, 2016

Download

Documents

Luke Hudson
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

Isotopes and Ions

Variations on the Atom

Dr. M. HazlettMandeville High School

Page 2: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

Isotopes

• All atoms of an element have the SAME number of protons (p+)

• The p+ number is the atomic number (Z)– This is a constant– For example: All Sodium (Na) atoms have 11 p+

– If an atom loses a proton, it becomes a different element• If Na loses 1 p+, then it has become Neon (Ne)

Page 3: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

Z = atomic number = p+

• The number of protons identifies the atom and which element it is

• In a stable atom:– # p+ = # n0 = # e-

– Thus, Na in its stable form has 11 p+; 11 n0; and 11 e-

– If it has an unequal number of p+ and n0, then it is called an ISOTOPE

Page 4: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

• Theoretically – an element can have as many isotopes of itself as it has neutrons, or it can add an unlimited number of n0

• For example: H has 3; C has 16; Al has 25– These can be looked up in the CRC (the

Chemistry/Physics Data Bible) or on the internet– Remember – a change in the number of n0 does

not change the element’s atom – only a change in the number of protons can do that!

Page 5: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

The Carbon Isotope

Page 6: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

Ions• Ions are when an atom has an unequal

number of p+ and e-

• Remember – a stable atom has a neutral overall charge due its equal number of p+ and e-

• When an atom loses or gains an e-, its charge changes accordingly– Loss of e- means a + charge; gaining an e- means a

– charge for the atom

Page 7: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

Losing or Gaining e- . . . . .• If an atom loses an e-, then it has more p+ than

e- and it will have an overall positive charge• Different elements’ atoms can lose 1, 2, 3, or

even 4 electrons depending on various factors• If an atom has LOST e-, then it is called a

CATION or a positive ion– A Cation would be written as Al+ (the one being

understood) or Al+3

Page 8: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

• Atoms can also gain electrons• If an atom gains electrons (from 1 up to 4), then

it will have more e- than p+ and will end up having an overall negative charge

• A negatively charged ion is called an ANION

– The element is shown this like: Na- (the 1 is understood) or Na-2

• The losing or gaining of electrons determines what type of bonds the atoms will form, and which atoms will bond to others

Page 9: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.
Page 10: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.
Page 11: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

Ions in Water Solution

Page 12: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

Using the Periodic Table• Elements in the Main Groups (A), form fairly

consistent ions – LEARN TO USE THE CHART• Group IA will form +1 ions; Group 2A form up to +2;

Group 3A form up to +3 ions• Group 4A will form either up to -4 or +4 ions• Group 5A will form up to -3 ions; Group 6A up to -2;

Group 7A form -1; and Group 8A will not form ions at all

• Those elements in the B groups vary and we’ll learn those later

Page 13: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.
Page 14: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

Ions and Isotopes in Review• Stable atom: #p+ = #n0 = #e-

• Atomic Mass - #n0 = # p+

• Atomic Mass - #p+ = #n0

• If charge is 0, then #p+ = #e-

• If charge is positive, then #p+ > #e- Cation

• If charge is negative, then #p+ < #e- Anion

Page 15: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

Examples:

• Li-1 has gained an electron, meaning there is one more negative charge than positive ones– It has 3 p+ and 4 e-

• Li+1 has lost an electron, meaning there is one more positive charge than negative ones– It has 3 p+ and 2 e-

• REMEMBER: The # of p+ DO NOT CHANGE• Only the number of n0 (isotope) and e- (ion) change

Page 16: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

• Cf-3 has an atomic number of 98– This means it has 98 p+

– Its atomic mass is 216– It has 118 n0, (216 – 98), making it an ion and an

isotope!– Since it has a -3 charge, the number of e- will be

101; (98 + 3)

– Zn+1 has 30 p+ and n0; but due to the +1 charge, it has only 29 e-

Page 17: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.
Page 18: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

Mass Number and Atomic Mass

• An atom’s mass number = # p+ + # n0

• The atomic mass unit (amu or u) is a little more complex– It is an average of all of an atom’s isotopes and

what percent abundance that isotope is in nature• Abundances will add up close to 100%• The closer to a whole number the amu is, the fewer the

isotopes that exist

Page 19: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

Determining the average atomic mass:

• Average Atomic Mass = (Mass of Isotope 1)(% Abundance of Isotope 1) + (Mass of Isotope 2)(% Abundance of Isotope 2) +(Mass of Isotope 3)(% Abundance of Isotope 3) +(Mass of Isotope ∞)(% Abundance of Isotope ∞)

AMU is a little different. . . . . . .

Page 20: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

AMU (sometimes just an ‘u’)

• Average Mass Unit– It uses C-12 as a reference point• C-12 has 6 protons and 6 neutrons• 1 amu is the equivalent of 1/12 of a Carbon’s mass

Mass amun0 1.675 x 10-24 g 1.008665p+ 1.673 x 10-24 g 1.007276e- 9.1 x 10-28 g 0.000549

Page 21: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

• Average Atomic Weight example:

For an unknown element we know that:• the mass of Isotope 1 is 6.015 amu and its abundance

is 7.5%• The mass of Isotope 2 is 7.016 amu with a 92.5%

abundance• Therefore – – (6.015)(.075) + (7.016)(.925) = 6.941 amu– Looking on the Periodic Chart we can see the

element is Lithium (Li)

Page 22: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

Another example:• N 14 and N 15 have a total amu of 14.007. What are the percentages of abundance?

Make the abundances equal to x and (x-1). Thus: 14(x) + 15(1 - x) = 14.007 14x + (15 – 15x) = 14.007

- x = 14.007 - 15 so, x = 99.3 % for N14

and, 1 – x = 0.7% for N15

Page 23: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

On the Periodic Table:The top number is Z, the Atomic Number or number of p+

The Element’s Symbol

The element average atomic weight set by isotopes and abundances

Page 24: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

• If the Atomic Weight is in (parentheses), then it is a synthetically made element and it has no known isotopes

• The closer to a whole number the atomic weight is, the fewer isotopes the element has

• To discover known isotopes and abundances – use the CRC Handbook

Page 25: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

Conservation of Mass

• Conservation of Mass means that the mass of the reactants will equal the mass of the products after the reaction– This is true no matter how many reactants or

products exist in the reaction– Example: Fe with a mass of 15.72 g; placed in a

solution of 21.2 g Cu(II)Sulfate. Cu separates. How much Fe (II) Sulfate created?

Page 26: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

– The final masses of the reaction (rxn) are Fe = 8.33 g; and Cu = 8.41 g

– Thus – 15.72 g – 8.33 g = 7.39 g– mreactant 1 + mreactant 2 = mproduct 1 + mproduct 2

• mFe + mCu = mCuS + mFeS

• mFeS = mFe + mCuS - mCu

• mFeS = 7.39 g + 21.12 g – 8.41 g = 20.10 g

Page 27: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

Law of Definite Proportions• In a compound, the same elements will be in

the same proportion by mass• Example:– 100 g H2O contains 11.19 g of H2 and 88.81 g O

– % Composition = mass element x 100 mass compound

Well, what does it equal???????

Page 28: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

OK – try another one . . . .

• 25 g of a compound with 6.77 g tin and 18.23 g bromine. What percent is tin by mass?– mass tin x 100 = 6.77 x 100 = mass compound 25

Did you get the answer?

Page 29: Isotopes and Ions Variations on the Atom Dr. M. Hazlett Mandeville High School.

The EndNow, onto the Periodic Table!