Top Banner

of 70

Intron LTE

Apr 14, 2018

Download

Documents

Mohamed Alattar
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/27/2019 Intron LTE

    1/70

    Europe & APAC

    94 Duke StreetGlasgow G4 0UWScotland UK

    Tel and Fax +44 (0)141 552 8855

    [email protected]

    USA

    200N. Westlake Blvd, #202Westlake VillageLos Angeles CA 91362, USA

    Tel +1 805 413 4127

    Introduction to LTEDaniel Garca-Als, Iain Stirling & Bob Stewart

  • 7/27/2019 Intron LTE

    2/70

    Steepest Ascent Ltd. www.steepestascent.com 2

    3GPP Evolution

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    3/70

    Steepest Ascent Ltd. www.steepestascent.com 3

    General Requirements Data rates (for a 20 MHz bandwidth):

    100 Mbps in DL

    50 Mbps in UL

    Spectral efficiency associated to data rates shown above

    5 bits/sec/Hz in DL 2.5 bits/sec/Hz in UL

    Latency smaller than 5 msec for small IP packets

    Voice service: at least same quality as WCDMA/HSPA

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    4/70 Steepest Ascent Ltd. www.steepestascent.com 4

    Requirements: Mobility

    Mobility :

    Optimised for 0 to 15 km/h

    High performance for up to 120 km/h

    Should maintain a connection for up to 350 km/h (or even 500km/h for some frequency bands)

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    5/70 Steepest Ascent Ltd. www.steepestascent.com 5

    Requirements: Coverage Coverage :

    Up to 5 km cell radius: meet throughput, spectral efficiency andmobility targets

    Up to 30 km cell radius: slight performance degradation istolerated

    Up to 100 km cell radius: operation not precluded5 km

    30 km100 km

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    6/70 Steepest Ascent Ltd. www.steepestascent.com 6

    Requirements: E-MBMS Enhanced Multimedia Broadcast Multicast Service (E-MBMS):

    Should provide MBMS better than Release 6;

    Broadcast required spectral efficiency 1 bit/sec/Hz;

    Should be possible to have MBMS only or a mixture of MBMSand non-MBMS services;

    Can transmit MBMS over single frequency network (MBSFN);

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    7/70 Steepest Ascent Ltd. www.steepestascent.com 7

    Requirements: Spectrum Flexibility Duplexing modes:

    FDD : Frequency Division Duplex

    TDD : Time Division Duplex Example bandwidths:

    1.4 MHz3 MHz5 MHz

    10 MHz15 MHz20 MHz

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    8/70 Steepest Ascent Ltd. www.steepestascent.com 8

    Frame Structure FDD frame structure:

    TDD frame structure:

    slot (0.5ms)

    0

    subframe (1ms)

    frame (10ms)

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

    subframe

    frame

    slot

    0 2 3 4 5 7 8 9

    DwPTS UpPTSGP DwPTS UpPTSGP

    0 2 3 4 5 7 8 9610 msec

    switch-point

    5 msecswitch-point

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    9/70 Steepest Ascent Ltd. www.steepestascent.com 9

    Resource Grid Two dimensional data structure:

    ...

    0

    ...

    ...

    ...

    ...

    ...

    ...

    . . .

    . . .

    a slot

    s u

    b c a r r

    i e r s

    OFDM symbols

    time f r e q u e n c y

    0 frame1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

    a resource element

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    10/70 Steepest Ascent Ltd. www.steepestascent.com 10

    Flexible Bandwidth LTE defined in a bandwidth independent way with:

    resource blocks of 12 sub-carriers spaced 15 kHz

    System bandwidth should be easily reconfigured

    1 2

    s u

    b c a r r

    i e r s

    resourceblock

    1 slot

    f r e q u e n c y

    time

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    11/70 Steepest Ascent Ltd. www.steepestascent.com 11

    Transmission Time Interval (TTI) TTI:

    length of independently decodable transmission link

    In LTE a TTI is a subframe (2 slots): 1 msec

    Minimum resource that can be allocated in LTE: 1 subframe in time: 1 msec

    12 subcarriers in frequency:

    0 2 3 4 5 7 8 91 6

    subframe: 1 msec

    frame: 10 msec

    180 kHz 12 15 kHz=

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    12/70 Steepest Ascent Ltd. www.steepestascent.com 12

    Multiple Access Scheme

    Downlink

    Orthogonal Frequency Division Multiple Access ( OFDMA ) withcyclic prefix (CP)

    Uplink Single Carrier Frequency Division Multiple Access ( SC-

    FDMA ) with cyclic prefix

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    13/70

    Steepest Ascent Ltd. www.steepestascent.com 13

    Adaptive Modulation and Coding Downlink modulation schemes

    BPSK, QPSK, 16QAM, 64 QAM

    Uplink modulation schemes

    QPSK, 16QAM, 64QAM

    Channel coding: Turbo coder with

    coding rate of 1/3

    two 8-state constituent encoders contention free internal interleaver

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    14/70

    Steepest Ascent Ltd. www.steepestascent.com 14

    MIMO Support Multiple input multiple output support (downlink only):

    2 or 4 transmit antennas

    2 or 4 receive antennas

    Transmit diversity

    Cyclic delay diversity (CDD)

    Space frequency transmit diversity (transmit diversity codingapplied before IDFT)

    Spatial multiplexing

    Up to 4 layers or transmit streams

    Codebook based precoding

    Note: one antenna is used in non-MIMO mode.

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    15/70

    Steepest Ascent Ltd. www.steepestascent.com 15

    LTE Release 9 enhancements Multimedia Broadcast Multicast Service (MBMS)

    completion of MBMS specification by adding related logicalchannels and clarifying physical layer details.

    Home eNodeB (femtocells)

    Interference scenarios such as WiFi and DECT interference;

    Positioning support UE reception of satellite positioning signals (Galileo/GPS/

    GLONASS)

    UE reception of new downlink positioning reference signal Dual-layer UE-specific (non-codebook based) beamforming

    Two new reference signals are defined (antenna ports 7 and 8)

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    16/70

    Steepest Ascent Ltd. www.steepestascent.com 16

    3GPP LTE Release 10 and beyond Has been submitted to the ITU as a candidate for IMT-Advanced;

    Release 10 features:

    Carrier aggregation to give up to 100MHz bandwidth;

    Downlink transmission with 8 antennas and layers;

    Uplink multi-antenna transmission with up to 4 antennas;

    Co-ordinated Multi-Point (CoMP) transmission and reception; Relaying from Relay Nodes (RN) to eNB;

    Latency improvements;

    2.6GHz TDD support for USA

    Self Optimising Networks (SON) enhancements

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    17/70

    Europe & APAC

    94 Duke StreetGlasgow G4 0UWScotland UK

    Tel and Fax +44 (0)141 552 8855

    [email protected]

    USA200N. Westlake Blvd, #202

    Westlake VillageLos Angeles CA 91362, USA

    Tel +1 805 413 4127

    LTE UplinkDaniel Garca-Als, Iain Stirling & Bob Stewart

  • 7/27/2019 Intron LTE

    18/70

    Steepest Ascent Ltd. www.steepestascent.com 2

    Uplink Channels

    Transport Channels (TrCH)

    Control Information

    UL-SCH Uplink - Shared ChannelRACH Random Access Channel

    UCI Uplink Control Information

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    19/70

    Steepest Ascent Ltd. www.steepestascent.com 3

    Mapping to Physical Channels

    Control information can be carried in PUSCH and PUCCH

    UL-SCH

    UCI

    RACH

    Uplink

    PUSCH

    PRACH

    PUCCH

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    20/70

    Steepest Ascent Ltd. www.steepestascent.com 4

    Uplink Control Signalling Conveys L1 and L2 control information

    HARQ acknowledgments for DL-SCH blocks

    channel quality reports: CQI, RI and PMI

    scheduling requests

    Transmitted on PUCCH if no resources are allocated to UL-SCH

    multiplexed with UL-SCH on to PUSCH (before SC-FDMA) if there is a valid schedule grant

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    21/70

  • 7/27/2019 Intron LTE

    22/70

    Steepest Ascent Ltd. www.steepestascent.com 6

    Control Information PUCCH The channel coding operations are:

    codeblock

    up to 11 bits

    Indication (CQI) ACK / NACK

    1 or 2 bits

    Channel Qualityscheduling

    0 bits

    request

    PUCCHformat 1

    PUCCHformat 1a

    or format 1b

    PUCCHformat 2

    codeblock

    up to 11 bits

    Indication (CQI)Channel Quality

    PUCCHformat 2a

    ACK / NACK

    1 or 2 bits

    20 bits 20 bits

    or format 2b

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    23/70

    Steepest Ascent Ltd. www.steepestascent.com 7

    Channels and Signals A physical channel is defined as a set of resource elements carrying

    information originating at a higher layer;

    A physical signal is defined as a set of resource elements used in

    support of the physical layer but not originating from a higher layer. For the uplink, the following physical channels are defined:

    PUSCH : Physical Uplink Shared Channel;

    PUCCH : Physical Uplink Control Channel;

    PRACH : Physical Random Access Channel.

    For the uplink, the following physical signals are defined: Sounding Reference Signal (SRS)

    Demodulation Reference Signal (DMRS)

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    24/70

    Steepest Ascent Ltd. www.steepestascent.com 8

    Uplink Reference Signals There are two types of uplink reference signals:

    Demodulation reference signal : associated with PUSCH or PUCCH

    Sounding reference signal : not associated with any other transmission

    They are time multiplexed with uplink data (not frequency multiplexed)

    Used for channel estimation

    0 1 2 3 4 5 6 0 1 2 3 4 5 6

    slot slotsubframe

    0 1 2 3 4 5 6 0 1 2 3 4 5 6

    0 1 2 3 4 5 6 0 1 2 3 4 5 6

    user #1

    user #2

    user #3

    reference signal

    dataf

    t

    PUSCH demodulation referencesignal example (normal CP)

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    25/70

    Steepest Ascent Ltd. www.steepestascent.com 9

    Demodulation Reference Signals: DRS There are two demodulation reference signals:

    one for the PUSCH ;

    and one for the PUCCH .

    Used for channel estimation to allow for coherent demodulation

    Desired attributes: small power variations in:

    time: results in high power amplifier efficiency frequency: results in similar channel estimation quality for all

    frequency components

    DRS sequences used:

    Cyclic extensions of Zadoff-Chu sequences (long sequences)

    Special short QPSK sequences

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    26/70

    Steepest Ascent Ltd. www.steepestascent.com 10

    Sounding Reference Signal (SRS) I eNodeB needs channel quality information in order to assign resources

    From DRS eNodeB can only get channel estimates on UE spectrum

    No information available out of assigned spectrum

    SRS overcome this problem

    Used by base station to estimate channel quality of UEs

    UE

    allocatedresources

    txed resource

    grid

    channel estimatesonly available on

    rxed resourcegrid

    this band

    no channel estimates

    available in other bands

    DRS

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    27/70

    Steepest Ascent Ltd. www.steepestascent.com 11

    Sounding Reference Signal (SRS) II May cover large frequency span (not assigned to UE):

    minimum of 4 resource block span

    multiples of 4 resource blocks span

    Can be transmitted as often as 2 msec (every 2nd subframe)

    Can be transmitted as infrequently as 160 msec (every 16th frame)

    Not necessarily transmitted with any physical channel (unlike DRS)

    SRS modes

    wideband: one transmission covers band of interest

    frequency hopping: narrowband, location changes with time

    subframe subframe subframe subframe subframe subframe

    SRS

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    28/70

    Steepest Ascent Ltd. www.steepestascent.com 12

    SRS Transmission Transmitted on last symbol of subframe every 2nd subcarrier

    Multiple UEs can transmit SRS s simultaneously

    Interference is avoided by:

    using different cyclic shifts (phase rotations): orthogonality

    changing the comb transmission pattern

    . . .

    . . .

    . . .

    . . .

    subframe

    . . .

    . . .

    OFDM symbol

    SRS subcarriers UE 1

    used for SRS

    SRS subcarriersUE 2

    UE 3

    using different

    cyclic shifts for SRS

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    29/70

    Steepest Ascent Ltd. www.steepestascent.com 13

    Physical Uplink Control Channel PUCCH: Physical Uplink Control Channel

    conveys uplink control information;

    never transmitted simultaneously with PUSCH from the UE.

    PUCCH used if UE has no valid schedule grant

    Transmitted with frequency hopping (provides frequency diversity)

    Transmitted on band edges: leaves contiguous bandwidth for PUSCHin the middle.

    UE

    uplink control

    PUCCH:

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    30/70

    Steepest Ascent Ltd. www.steepestascent.com 14

    PUCCH Bandwidth One resource block (RB) allocated to each PUCCH This is too large for the amount of information transmitted

    Therefore more than one PUCCH can share the same RB :

    Use same base reference sequence

    Use different phase rotations (cyclic shifts ) Use different orthogonal cover code (formats 1, 1a & 1b)

    Inter-cell interference can be a problem Inter-cell interference is randomised by using hopping patterns in

    and orthogonal codes with each symbol

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    31/70

    Steepest Ascent Ltd. www.steepestascent.com 15

    Physical Uplink Shared Channel PUSCH : Physical Uplink Shared Channel carries

    data;

    control information.

    PUSCH processing chain:

    UE

    uplink data & control

    PUSCH:

    ScramblingModulation

    mapper mapper Resource el.

    modulationSC-FDMA

    Precoding

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    32/70

    Steepest Ascent Ltd. www.steepestascent.com 16

    PUSCH Scrambling

    Modulo 2 multiplication (XOR) with a scrambling sequence

    Only applied to: coded data, channel quality coded bits, ACK codedbits

    Not applied to ACK placeholders, these are set to predetermined value

    ScramblingModulation

    mapper mapper Resource el.

    modulationSC-FDMA

    PrecodingPUSCH

    c

    1 ACK bit placeholders Q m 4=( )

    ... 0 0 1 0 1 1 1 X X X 0 1 1 0 1 0 ...

    coded datach. quality coded bits

    ACK coded bits

    .0 0 1 0 1 0 1 1 1 1 0 0 1 1 1 0b

    i( )

    b i( )

    c i( )

    b

    i( ) b

    i 1

    ( )=

    b

    i 1+( ) b

    i 2+( ) 1= =

    d l

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    33/70

    Steepest Ascent Ltd. www.steepestascent.com 17

    PUSCH Modulation

    Maps bits into symbols

    The modulation mapping defines 3 constellations as follows:

    ScramblingModulation

    mapper mapper Resource el.

    modulationSC-FDMA

    PrecodingPUSCH

    Q

    I

    QPSK

    1

    100

    01

    10

    11

    Q

    I1

    1

    16-QAM

    Q

    I3 5 7

    3

    5

    7

    64-QAM

    0000

    0001

    0010

    0011

    1010

    1011

    1000

    1001

    3

    3

    0101

    0100

    0111

    0110

    1111

    1110

    1101

    1100

    1

    1

    101111 101101 100101 100111 000111 000101 001101 001111

    101110 101100 100100 100110 000110 000100 001100 001110

    101010 101000 100000 100010 000010 000000 001000 001010

    101011 101001 100001 100011 000011 000001 001001 001011

    111011 111001 110001 110011 010010 010001 011001 011011

    111010 111000 110000 110010 010010 010000 011000 011010

    111110 111100 110100 110110 010110 010100 011100 011110

    111111 111101 110101 110111 010111 010101 011101 011111

    PUSCHP di

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    34/70

    Steepest Ascent Ltd. www.steepestascent.com 18

    PUSCH Precoding

    Not the same as downlink (multi-antenna) precoding

    Produces SC-FDMA modulation;

    Generation process:

    Split the modulated symbols into sets; Each set (of size ) forms an SC-FDMA symbol ;

    Perform a DFT (precoding part of SC-FDMA modulation);

    DFT size: its prime must be a product of 2, 3 and/or 5

    Smallest DFT size is 12

    ScramblingModulation

    mapper mapper Resource el.

    modulationSC-FDMA

    PrecodingPUSCH

    Msymb Msymb MscPUSCH

    Msc

    PUSCH

    PUSCHP di DFTSi

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    35/70

    Steepest Ascent Ltd. www.steepestascent.com 19

    PUSCH Precoding: DFT Size DFT can be implemented with FFT for efficiency; DFT size: its prime factors are 2, 3 and/or 5

    Minimum DFT size (resource block size in the frequency domain): 12

    MscPUSCH

    NscRB

    2 2

    3 3

    5 5

    NscRB

    NRBUL

    =

    . . .

    . . .

    . . .

    . . .

    ...

    ...

    subframefreq

    time

    1 2 s

    u b c a

    r r i er

    s

    DFT

    N scRB 12=

    R El tM i

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    36/70

    Steepest Ascent Ltd. www.steepestascent.com 20

    Resource Element Mapping

    The final stage in PUSCH processing is to map the symbols to theallocated physical resource elements

    Note that allocation sizes are limited to values whose prime factors are2, 3 & 5 (imposed by precoding stage)

    Map in increasing order:

    first subcarriers

    then the time domain (SC-FDMA) Avoid SC-FDMA symbols with

    Demodulation reference signals

    Sounding reference signals

    ScramblingModulation

    mapper mapper Resource el.

    modulationSC-FDMA

    PrecodingPUSCH

    z

    PUSCHF H i g

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    37/70

    Steepest Ascent Ltd. www.steepestascent.com 21

    PUSCH Frequency Hopping Allocated spectrum to a UE can change every subframe ;

    This is controlled by a frequency hopping function :

    This provides for better frequency and interference diversity .

    f hop .( )

    frequency

    time

    subframeintervals

    short-term narrowband interference Mobile 2

    Mobile 3

    Mobile 1

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    38/70

    Europe & APAC94 Duke Street

    Glasgow G4 0UWScotland UK

    Tel and Fax +44 (0)141 552 8855

    [email protected]

    USA200N. Westlake Blvd, #202

    Westlake VillageLos Angeles CA 91362, USA

    Tel +1 805 413 4127

    LTE DownlinkDaniel Garca-Als, Iain Stirling & Bob Stewart

    DownlinkChannels

  • 7/27/2019 Intron LTE

    39/70

    Steepest Ascent Ltd. www.steepestascent.com 2

    Downlink Channels

    Transport Channels (TrCH):

    Control Information:

    DL-SCH Downlink - Shared ChannelBCH Broadcast ChannelPCH Paging ChannelMCH Multicast Channel

    CFI Control Format Indicator

    HI HARQ Indicator DCI Downlink Control Information

    MappingtoPhysicalChannels

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    40/70

    Steepest Ascent Ltd. www.steepestascent.com 3

    Mapping to Physical Channels

    DL-SCH

    CFI

    BCHPCH

    MCHHI

    DCI

    Downlink

    PDSCH

    PBCH

    PMCH

    PCFICH

    PDCCH

    PHICH

    DownlinkChannelsandSignals

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    41/70

    Steepest Ascent Ltd. www.steepestascent.com 4

    Downlink Channels and Signals A physical channel : set of resource elements carrying information

    originating at a higher layer;

    A physical signal : set of resource elements used in support of thephysical layer but not originating from a higher layer.

    Reference Signals;

    Synchronisation Signals;

    PDSCH : Phy DL Shared Ch

    PDCCH : Phy DL Control Ch.

    PMCH : Phy Multicast Ch.

    PBCH : Phy Broadcast Ch.

    PCFICH : Phy Ctrl FormatIndicator Ch.

    PHICH : Phy Hybrid ARQIndicator Ch.

    Framestructure

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    42/70

    Steepest Ascent Ltd. www.steepestascent.com 5

    Frame structure

    s u

    b c a r r

    i e r

    OFDM symbol

    ref. signalcontrol

    PSS

    SSS

    BCH

    unused

    PCFICH

    ref. signal

    PDCCH

    PDSCH

    regions

    unused

    unused

    SSS PSS

    BCH

    PCFICH

    SSS PSS

    DownlinkPCFICH

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    43/70

    Steepest Ascent Ltd. www.steepestascent.com 6

    Downlink PCFICH PCFICH: Downlink Physical Control Format Indicator Channel

    specifies how many OFDM symbols are used for PDCCHtransmission;

    Uses QPSK modulation

    Transmitted in the same set of antenna ports as PBCH;

    It has its own specific layer mapping, precoding and mapping to

    resource elements.

    UE

    format of PDCCH

    PCFICH:

    PhysicalDownlinkControlChannel I

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    44/70

    Steepest Ascent Ltd. www.steepestascent.com 7

    Physical Downlink Control Channel I PDCCH: Physical Downlink Control Channel

    carries control information including scheduling assignments;

    Uses QPSK modulation

    Transmitted in the same set of antenna ports as PBCH; It has its own specific layer mapping, precoding and mapping to

    resource elements

    UE

    downlink and uplink scheduling assignmentsPDCCH:

    PhysicalHybridARQIndicatorChannelI

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    45/70

    Steepest Ascent Ltd. www.steepestascent.com 8

    Physical Hybrid ARQ Indicator Channel I PHICH: Physical Hybrid ARQ Indicator Channel

    hybrid-ARQ ACK and NACK indicators UEs;

    Transmitted in the same set of antenna ports as PBCH;

    The PHICH uses its own specific:

    layer mapping; precoding;

    mapping to resource elements.

    UE

    ACK / NACKPHICH:

    PhysicalDownlinkSharedChannel

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    46/70

    Steepest Ascent Ltd. www.steepestascent.com 9

    Physical Downlink Shared Channel PDSCH: Physical Downlink Shared Channel

    It is the main downlink channel;

    Carries transport blocks to the mobiles ;

    PDSCH uses the following antenna ports:

    {0}, {0,1} or {0,1,2,3} if UE-specific reference signals are nottransmitted ;

    {5} if UE-specific reference signals are transmitted .

    UE

    downlink data

    PDSCH:

    DownlinkPBCH

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    47/70

    Steepest Ascent Ltd. www.steepestascent.com 10

    Downlink PBCH PBCH: Physical Broadcast Channel

    carries broadcast information (from the BCCH logical channel)

    Uses a simplified and fixed transport format ; A coded block of 1920 samples for normal cyclic prefix or 1728

    samples for extended cyclic prefix is produced by the channel coder

    every 40ms; This block is QPSK modulated into 960 or 864 complex symbols;

    Transmit diversity layer mapping and precoding is performed.

    UE

    UE

    UEUE

    UE

    DownlinkReferenceSignalsI

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    48/70

    Steepest Ascent Ltd. www.steepestascent.com 11

    Downlink Reference Signals I

    There are three types of downlink reference signal:

    Cell-specific : its structure depends on the cell ID

    MBSFN references for MBSFN transmission;

    UE-specific references: used in non-codebook basedbeamforming.

    Provided in support of coherent demodulation;

    Used by UE to perform channel estimation and to obtain channelquality measurements.

    DownlinkReferenceSignals II

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    49/70

    Steepest Ascent Ltd. www.steepestascent.com 12

    Downlink Reference Signals II References are arranged across time and frequency ; Only one reference signal is transmitted through per antenna port , this

    allows for channel estimation for the different antenna ports ;

    When an antenna port transmits a reference signal other ports aresilent;

    time

    f r e q u e n c y ANTENNA PORT 1

    ANTENNA PORT 2

    Antenna port 1 reference signal

    Antenna port 2 reference signal

    No transmission

    SynchronisationSignals I

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    50/70

    Steepest Ascent Ltd. www.steepestascent.com 13

    Synchronisation Signals I There are two downlink synchronisation signals :

    Primary synchronisation signal;

    Secondary synchronisation signal.

    This structure reduces cell search procedure complexity ;

    Used to obtain:

    UE

    CELL

    Primary/secondary synch signals

    Cell identity

    frame timing

    Synchronisation Signals II

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    51/70

    Steepest Ascent Ltd. www.steepestascent.com 14

    y g Always transmitted in the same place regardless of bandwidth used.

    first 72 carriers (around DC carrier);

    OFDM symbols 5 and 6 of first slot in subframes 0 & 5.

    10 msec radio frame

    #0 #1 #2 #3 #4 #5 #6 #7 #8 #9

    subframe

    0 1 2 3 4 5 6 0 1 2 3 4 5 6

    slot slot

    7 2 s u

    b c a

    r r i e r s

    OFDM symbol

    0 1 2 3 4 5 6 0 1 2 3 4 5 6

    slot slot

    7 2 s u

    b c a

    r r i e r s

    OFDM symbol

    b a n

    d w i d t h

    f

    t

    secondary synch signal

    primary synch signal

    Channel Coding Procedures

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    52/70

    Steepest Ascent Ltd. www.steepestascent.com 15

    g

    There are a number of procedures which are used for multipletransport channel or control information types:

    CRC calculation; Code block segmentation ;

    Channel coding (tail biting convolutional and turbo );

    Rate matching ;

    Tr. Channel & Ctrl. Information Processing

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    53/70

    Steepest Ascent Ltd. www.steepestascent.com 16

    g

    Depending on the channel, a different set of processing steps occurs:

    channelcoding

    ratematching

    code blocksegment.

    bitstream e k E

    b i t s

    bitstream f k G

    b i t s

    CRCattachment

    code blockconcat.

    channelcoding

    ratematching

    CRCattachment

    input bits a k A b i t s

    input bits a k A b i t s

    BCHDL-SCH, PCH and MCH

    G C R C 1 6

    D (

    )

    c o n v .

    G C R C 2 4 A

    D (

    )

    t u r b o

    G C R C 2 4 B

    D (

    )

    channelcoding

    bitstream b k B

    b i t s

    CFI or HI

    CFI or HI

    H I : r a

    t e 1 / 3 r e p e

    t i t i o n c o

    d e

    C F I : r a

    t e 1 / 1 6 b l o c

    k c o

    d e

    bitstream e k E

    b i t s

    channelcoding

    ratematching

    CRCattachment

    input bits a k A b i t s

    DCI

    G C R C 1 6

    D (

    )

    c o n v .

    Downlink Physical Channel Processing

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    54/70

    Steepest Ascent Ltd. www.steepestascent.com 17

    y g

    The general structure of downlink physical channels processing is:

    This structure applies to the PDSCH;

    other channels have slightly different processing chains.

    ScramblingModulation

    mapper mapper Resource el.

    layers antenna ports

    mapper Layer

    Precoding

    modulationOFDM

    ScramblingModulation

    mapper mapper Resource el.

    modulationOFDM

    code words

    . . .

    . . .

    . . .

    . . .

    Scrambling

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    55/70

    Steepest Ascent Ltd. www.steepestascent.com 18

    g

    Produces a block of scrambled bits from the code word bits :

    Modulo 2 multiplication (XOR) of the code word bits with a scrambling

    sequence :

    ScramblingModulation

    mapper mapper Resource el.

    layers antenna ports

    mapper

    Layer

    Precoding

    modulationOFDM

    ScramblingModulation

    mapper mapper Resource el.

    modulationOFDM

    code words

    . . .

    . . .

    . . .

    . . .

    b q( ) b q( )

    b q( )

    i( ) bq( ) i( ) c

    q( ) i( )+( ) mod 2;= i 0 Mbitq( ) 1 =

    c q( )

    block of bits bq( ) block of bits b

    q( )

    c q( )scrambling sequence

    code word bits scrambled bits

    Modulation

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    56/70

    Steepest Ascent Ltd. www.steepestascent.com 19

    Downlink supported modulation formats:

    Physical Channel Modulation Schemes

    PDSCH QPSK, 16QAM, 64QAMPMCH QPSK, 16QAM, 64QAM

    PDCCH QPSK

    PBCH QPSK

    PCFICH QPSKPHICH BPSK

    ScramblingModulation

    mapper mapper Resource el.

    layers antenna ports

    mapper

    Layer Precoding

    modulationOFDM

    ScramblingModulation

    mapper mapper Resource el.

    modulationOFDM

    code words

    . . .

    . . .

    . . .

    . . .

    Downlink Modulation Mapper

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    57/70

    Steepest Ascent Ltd. www.steepestascent.com 20

    The modulation mapping defines 4 constellations as follows:

    Amplitude levels are normalised.

    Q

    I

    QPSK

    1

    100

    01

    10

    11

    Q

    I1

    1

    16-QAM

    Q

    I3 5 7

    3

    5

    7

    64-QAM

    0000

    0001

    0010

    0011

    1010

    1011

    1000

    1001

    3

    3

    0101

    0100

    0111

    0110

    1111

    1110

    1101

    1100

    1

    1

    101111 101101 100101 100111 000111 000101 001101 001111

    101110 101100 100100 100110 000110 000100 001100 001110

    101010 101000 100000 100010 000010 000000 001000 001010

    101011 101001 100001 100011 000011 000001 001001 001011

    111011 111001 110001 110011 010010 010001 011001 011011

    111010 111000 110000 110010 010010 010000 011000 011010

    111110 111100 110100 110110 010110 010100 011100 011110

    111111 111101 110101 110111 010111 010101 011101 011111

    Q

    I

    QPSK

    1

    100

    01

    10

    11

    Q

    I

    BPSK

    1

    10

    1

    Multi-antenna Processing in LTE

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    58/70

    Steepest Ascent Ltd. www.steepestascent.com 21

    Includes

    layer mapping : splits data sequence into a number of layers precoding

    Under precoding the LTE standard can use

    cyclic delay diversity (CDD)

    spatial multiplexing (precoding)

    transmit diversity

    ScramblingModulation

    mapper mapper Resource el.

    layers antenna ports

    mapper Layer

    Precoding

    modulationOFDM

    Scrambling Modulationmapper mapper Resource el.

    modulationOFDM

    code words

    . . .

    . . .

    . . .

    . . .

    Transmission Schemes I

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    59/70

    Steepest Ascent Ltd. www.steepestascent.com 22

    non codebook based beamforming (single antenna, Port 5):

    Single antenna port, Port 0: Transmit Diversity:

    UE

    UE

    S F B C

    2 or 4 antennas supported

    b e a m

    f o r m

    2 or 4 antennas supported

    arbitrary beamforming vector

    1 layer UE

    Transmission Schemes II

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    60/70

    Steepest Ascent Ltd. www.steepestascent.com 23

    Open-loop spatial multiplexing (Large Delay CDD):

    Closed-loop spatial multiplexing:

    p r e c o

    d i n g

    2 or 4 antennas supported

    codebook

    2, 3 or 4 layersUE

    UE

    p r e c o

    d i n g

    2 or 4 antennas supported

    codebook

    2, 3 or 4 layers

    codebook selection suggestion (PMI)

    Transmission Schemes III

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    61/70

    Steepest Ascent Ltd. www.steepestascent.com 24

    Multi-user MIMO:

    codebook based beamforming (Closed-loop spatial multiplexing usinga single transmission layer):

    b e a m f o r m

    b e a m

    f o r m

    2 or 4 antennas supported

    codebook

    2, 3 or 4

    codebook selection suggestion (PMI)

    layers

    codebook codebook selection suggestion (PMI)

    (shared resources)

    UE

    UE

    b e a m f o r m

    2 or 4 antennas supported

    codebookcodebook selection suggestion (PMI)

    1 layer UE

    Physical Antennas and Antenna Ports

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    62/70

    Steepest Ascent Ltd. www.steepestascent.com 25

    LTE standard refers to antenna ports

    Antenna ports and physical antennas are different

    Antenna port: defined by the presence of an antenna port specificreference signal

    There are up to 6 antenna port specific reference signals

    Number of physical antennas is

    Antenna ports map to physical antennas.

    1 2 4, ,{ }

    Precoding for Spatial Multiplexing

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    63/70

    Steepest Ascent Ltd. www.steepestascent.com 26

    Used with the layer mapping for spatial multiplexing Supports or antennas: &

    Different coding used for:

    precoding without CDD or closed loop spatial multiplexing

    precoding with large delay CDD or open loop spatial mux.

    Codebook based precoding: 7 element codebook for the 2 antenna port case

    16 element codebook for the 4 antenna port case

    For spatial multiplexing the number of layers is also known as thetransmission rank

    P 2= P 4= p 0 1,{ } p 0 1 2 3, , ,{ }

    Spatial Mux: Precoding without CDD

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    64/70

    Steepest Ascent Ltd. www.steepestascent.com 27

    Also known as closed loop precoding

    Based on downlink channel estimates

    UE reports recommendations : RI (rank indication) and PMI(precoder matrix indication)

    eNodeB may or may not follow these recommendations whenselecting

    layer 1

    layer 2

    layer

    IDFT CP

    precoding

    IDFT CP

    IDFT CP

    W i( )P

    ant 1

    ant 2

    ant P

    x 0( ) i( )

    x 1( ) i( )

    x 1 ( ) i( )

    W i( )

    Spatial Mux: Large Delay CDD Precoding

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    65/70

    Steepest Ascent Ltd. www.steepestascent.com 28

    Also known as open loop precoding

    matrices and are applied first, then precoding

    codebook matrices used are predetermined

    channel quality measurements are not required

    layer 2

    layer

    IDFT CP

    precodingCDD

    IDFT CP

    IDFT CP

    W i( )P

    ant 1

    ant 2

    ant P

    1 0 0

    0 e j2 k

    0

    0 0 e

    j2 k 1 ( )

    U

    D i( )

    layer 1

    U D W i( )

    Beamforming

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    66/70

    Steepest Ascent Ltd. www.steepestascent.com 29

    Supported by LTE: precoding applied to a single layer Codebook based beamforming:

    Use precoding matrix from codebook

    UE is informed of precoding matrix used

    Non-codebook based beamforming:

    Arbitrary beamforming applied UE is not notified of precoding matrix used

    UE needs to estimate channel including effect of beamforming

    UE specific reference signals used (antenna port 5)

    Beamforming (UE specific) is applied to this reference signal

    1=

    Transmit Diversity Precoding

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    67/70

    Steepest Ascent Ltd. www.steepestascent.com 30

    For 2 antennas, precoding the Alamouti scheme is used as:

    Note that any two columns of the coding matrix are orthogonal;

    This is space-frequency transmit diversity (coding in frequencydomain)

    A similar sparse mapping applies to the case of 4 antennas.

    y 0( ) 2 i( )

    y 1( ) 2 i( )

    y 0( ) 2 i 1+( )

    y 1( ) 2 i 1+( )

    12

    -------

    1 0 j 0

    0 1 0 j0 1 0 j1 0 j 0

    Re x 0( ) i( ){ }

    Re x 1( ) i( ){ }

    Im x 0( ) i( ){ }

    Im x 1( ) i( ){ }

    =

    Resource Element Mapping

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    68/70

    Steepest Ascent Ltd. www.steepestascent.com 31

    The final stage in the physical layer processing before OFDMmodulation is resource element mapping

    Symbols are mapped to assigned resource elements

    Resource elements used by reference signals are avoided

    ScramblingModulation

    mapper mapper Resource el.

    layers antenna ports

    mapper Layer Precoding

    modulationOFDM

    ScramblingModulation

    mapper mapper Resource el.

    modulationOFDM

    code words

    . . . . . . . . . . . .

    OFDM Symbol Construction

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    69/70

    Steepest Ascent Ltd. www.steepestascent.com 32

    DC subcarrier is not modulated Subcarriers of resource blocks are arranged on both sides of the DC

    subcarrier

    For larger values of resource blocks in DL ( ) more resource blockslie to the left and right of the spectrum illustrated above.

    OFDM symbols are transmitted in turn.

    f

    resourceblock

    DC subcarrier

    ......

    NRBDL

    OFDM Modulation

    http://www.steepestascent.com/http://www.steepestascent.com/
  • 7/27/2019 Intron LTE

    70/70

    Steepest Ascent Ltd. www.steepestascent.com 33

    Implemented using an IFFT with 15kHz carrier spacing

    Cyclic prefix also added at this stage

    Each antenna port has its own OFDM modulation

    ScramblingModulation

    mapper mapper Resource el.

    layers antenna ports

    mapper Layer Precoding

    modulationOFDM

    ScramblingModulation

    mapper mapper Resource el.

    modulationOFDM

    code words

    . . . . . . . . . . . .

    http://www.steepestascent.com/http://www.steepestascent.com/